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Abstract 
 
This work is about the design and development of a standalone tool for the decompression of 
data from the Photodetector Array Camera and Spectrometer (PACS), one of the instruments 
housed inside the HERSCHEL Space Observatory (HSO). This is a part of an on-ground 
processing software package, with the purpose to provide an instrument for collecting, 
assembling, decompressing and later analyzing the data fragments received from the 
telescope. The work is done in JAVA programming language for simplicity, portability, 
reliability and a distributed computing. Furthermore, JAVA is object-oriented. Object-
oriented programming provides greater flexibility, modularity and reusability.  Thus it is easy 
to maintain/extend the on-ground processing tool for different or further compression 
algorithms or general upgrades. Within this work, we developed a scientific software tool for 
the processing of the received data from the HSO/PACS instrument. This software tool is 
designed and tested for PACS data but not limited for astronomical applications. The on-
ground processing concept can easily be adapted for other applications (Medical imaging, 
Telecommunication…etc). Results from the evaluation of the software with real and virtual 
test data are given at the end of this report. 
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1 Introduction 
 
A new form of communication has evolved over the last two decades. This involves mobile 
communication, the ever growing internet and video communication for example. Data 
compression is one of the enabling technologies for this multimedia revolution [11]. That also 
applies for astronomy applications, where data is collected on-board a spacecraft [18]. 
Optical and radar imaging sensors together with their specific characteristics and their 
common user requirements is intended as a basis for typical spaceborne imaging applications, 
where high-rate sensors deliver more data than can be transmitted directly to ground [4]. 
InfraRed (IR) detectors consist of fewer pixels than those for visual range [24], but the design 
of multi-sensor instruments leads to even higher data volumes [17]. Figure 1 shows an 
example of an IR image of the astronomy object Spiral galaxy M81 in three different wave-
lengths. These images were taken with Spitzer Space Telescope [23].   
 
 

 
 

Figure 1:  IR-Image from Spitzer Space Telescope 
 
 
If multiple detectors are operated in parallel to support multi-spectral or even hyper-spectral 
imaging, the data volumes multiply [17]. Transmitting image information face a bottleneck 
such, that this constraint has stimulated advances in compression techniques for astronomy 
[19]. Within the compression/decompression chain, the ground segment does not only serve 
as a facility for decompression of transmitted image data but can make use of much more 
advanced functions. These functions may include error concealment during compression (i.e. 
hiding of decompression failures due to data loss during transmission), combined 
decompression and restoration (e.g. removal of compression and/or sensor effects), or 
combined compression and feature detection. State of the art in IR data analysis is the analysis 
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package for Infrared Space Observatory (ISO) [21] and also the one for InfraRed 
Astronomical Satellite (IRAS) [22]. These packages were programmed in Interactive Data 
Language (IDL). Hence they are not programmed in a modular way it is more costly to adjust 
them for our need than to develop a new tool for the task. Promising initial results on data 
restoration and denoising using both wavelet and multiresolution-based on the median 
transform have been shown for ISO [20]. We intend to take advantage of these results for 
processing PACS instrument data within a standalone-processing environment for quick-look 
analysis and assessment. 
In this report we focus on the decompression of HSO/PACS data. The objective of this work 
is to develop a software tool for the processing of the received data from the Telescope. This 
software tool is programmed in a modular object-oriented way.  
 
 
Generally the task of the on-ground software can be subdivided into three major parts: 
 

�� Collection of the packets: The data processed by the telescope will be divided into 
fragments for transmission to earth. On-ground the compressed data needs to be 
regained from these data packets. This involves testing for transmission errors. 

�� Decompression of the data: The reconstructed compressed data blocks are 
decompressed with the reversals of the compression algorithms used on-board. This 
task includes correct handling of the data in case of errors. The user is supplied with 
information about the decompression run. Possibility to test the results of the 
decompression is given as well as computation of reconstruction error measures, 
which are explained in Section 2.2. 

�� Analysis of the reconstructed images: Once the original raw decompressed data is 
regained, the real images have to be recomputed and analysed. This includes tools for 
repairing images in case of transmission errors and evaluation of control and 
additional data. 

 
 

The last item of the above summary of the on-ground software is not part of this work and 
will not be described in this work. Further reports about the on-ground software tool for the 
HERSCHEL/PACS Telescope will deal with this task. 
 
This document consists of four main parts. First of all we discuss some basic stuff of data 
compression. The next section deals with the compression/decompression concept of the 
project. After that, this report is about the design and implementation of software, which one 
can use for collection and decompression of information, packed into data fragments. In this 
project this task was done specifically for the application of the HERSCHEL/PACS telescope. 
In section five we talk about the results of the evaluation of the implemented piece of 
software.  
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2 Data compression 
 
Data compression is used to reduce the amount of bits required to represent information, for 
example an image. In this section we want to explain fundamental things about data 
compression. This includes methods to compute reconstruction error measures which can be 
used to evaluate compression techniques. 
 

2.1 Basics about Data Compression 
 
In brief, data compression is the technique to encode data in a way that it allows compact 
storage or efficient transmission of information. This is possible because real world data is 
redundant. In information theory, redundancy is the number of bits used to represent a 
message minus the number of bits of actual information in the message. Figure 2 shows a 
basic data compression/decompression block diagram. Original data gets compressed which 
yields compressed data. This compressed data can be used for storage or transmission. The 
right part of the diagram shows the decompression which result is the reconstructed data. 
 

 

 
 

Figure 2: Data compression block diagram 
 
 
To measure how well a compression algorithm compresses a given set of data we look at the 
amount of bits required to represent the data before and after compression. Let S be the 
original data and CS  the compressed data. The compression ratio is defined as follows: 
 

 ( )
C

SCompression Ratio CR
S

�  

 
Basically data compression methods can be categorized into two types – lossless or lossy 
compression. K. Sayood gives the following definition of these methods [11]. 
 
 

�� Lossless compression techniques, as their name implies, involve no loss of 
information. If data have been losslessly compressed, the original data can be 
recovered exactly from the compressed data. Lossless compression is genereally used 
for applications that cannot tolerate any difference between the original and 
reconstructed data. Text compression is an important area for lossless compression. 

 
�� Lossy compression techniques on the other hand involve some loss of information, 

and data that have been compressed using lossy techniques generally cannot be 
recovered or reconstructed exactly. In return for accepting this distortion in the 
reconstruction, we can generally obtain much higher compression ratios than is 
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possible with lossless compression. In many applications, this lack of exact 
reconstruction is not a problem. For example, when storing or transmitting speech, the 
exact value of each sample of speech is not necessary. 

 
Compression methods are evaluated with different parameters. These are mainly, the time it 
takes to perform the algorithm on a given system, how much memory it uses and the 
reconstruction error versus the compression ratio achieved. The following section defines the 
term reconstruction error in this context. 

 

2.2 Reconstruction Error 
 
The reconstruction error is a parameter of the compression method to quantify the loss of 
information during the computation. Generally it is a computed value to describe the 
difference between the original and the reconstructed data. It can be used to measure the loss 
of data during a lossy compression, or to describe the loss of data due to transmission errors. 
There are different methods to compute reconstruction error measures. The methods vary in 
their way to describe the deviation of the data. Some of these measures are described in the 
following and can also be found in [10]. Let S  be the original data, RS  the reconstructed data 
and N  the absolute length of the data. 
 
 

�� Mean Absolute Error (MAE): This is the simplest measure, which computes the 
average absolute error and is defined as follows: 
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�� Root Mean Square Error (RMSE): This measure takes the average of the squares of 

the absolute difference and takes the square root of the result. It’s calculated as the 
standard deviation of the reconstructed data relative to the original data. 
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�� Signal to Noise Ratio (SNR): The SNR measure includes the intensity of the original 

data by dividing it with the sum of squares of the absolute difference. It is a term for 
the ratio between the maximum meaningful signal and the background noise.  The 
range of values is reduced by taking the logarithm.  
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�� Peak Signal to Noise Ratio (PSNR): The PSNR is the most commonly used 

reconstruction error measure for compression methods. The PSNR is defined as 
follows: 
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These metrics help to quantify the loss of data due to an applied compression computation. 
For more information on these measures and different measures see also [2,13]. 

 

3 Compression/Decompression Concept 
 
The whole project is about the development of a new space telescope – the 
HERSCHEL/PACS telescope. This is a space observatory covering the full far-infrared and 
submillimetre waveband. It will be located 1.5 million kilometres away from earth. A mirror 
will collect the light from distant and poorly known objects, such as newborn galaxies, and 
will focus it onto three instruments [1]. The data will be compressed on a digital signal 
processor based on the TSC21020E architecture for space application. An undetailed basic 
block diagram of the system is shown in Figure 3. The upper part of this diagram shows the 
processing of the data on-board the spacecraft. The lower part shows the reconstruction of the 
data on-ground.   
 
 

 
 

Figure 3: Block diagram of the basic concept 
 
 

The cameras of the telescope collect images of astronomy objects. They will either be 
spectroscopy or photometry type images, depending on the type of camera they are from. The 
data of the images get compressed with lossy and lossless data compression methods. Those 
methods are specifically designed and improved to get the best compression results. The 
compressed image data together with telescope control and some additional information is put 
into a block of data. These blocks are called Compressed Entities (CE). For use of a satellite-
to-ground transmission protocol, the obtained compressed entity is then split into several 
packets, which allow appropriate transmission to earth. This is shown in figure 2 at the upper 
part. 
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On-ground the image data has to be reconstructed. The task of reconstructing the images, 
mainly consist of two parts. The first is to reconstruct the raw data. This is shown with the 
lower part of figure 2 and that is exactly the task of the software tool, this report is about. 
Further parts of the on-ground SW take care of analyzing the raw image, control and 
additional data and some other tasks. Those parts will not be discussed in this report.  
The data packets generated on-board the telescope are transmitted to earth. The collection of 
the packets in first place is done by the on-ground receiving station by hardware which 
provides the packets in raw data files in an unordered way. The Software, which we 
implemented - we call it On-Ground Data Processing Software (OGDPSW), then has to 
collect, check and buffer this data fragments to regain the compressed entities. Once all the 
data from a compressed entity is received, the CE gets decompressed by running the 
appropriate decompression algorithms, which are the exact reversals of the lossless 
compression algorithms used on-board. The use of the compression algorithms is controlled 
by the operator of the spacecraft and users are informed with release notes to know the 
applied compression algorithms. The decompressed data is outputted into files on hard disk. 
Information according to errors during computation is collected and written into logfiles. 
After the computation the output data can be tested with reference data, if available. In the 
next chapter we describe how this SW is designed and realized.  
 
 

4 Software Implementation 
 
This part of the report is about the development of the program itself. We describe the design 
principles and give some relevant details from the implementation. A class digram and a 
flowchart of an important part of the software are included in this section. We as well give a 
short explanation of the tasks of each class implemented. The source code is also well 
documented with detailed in-source documentation. 
 

4.1 Design of the Program 
 
This software tool can basically be used for handling and decompressing any compressed 
data. (With modifications if the system is not using the same protocols as the astronomy 
application we are talking about here). 
The program has been implemented in JAVA in an object-oriented way. The benefit of using 
this language is mainly that the software is immediately available for any given platform. 
Furthermore, because JAVA is object-oriented, it provides greater reusability and modularity 
which was especially important for meeting the requirement of flexibility concerning the 
compression algorithms. This means that simple and quick change or upgrade of compression 
algorithms must be possible. That was reached by implementing the program with correctly 
designed and well documented interfaces. Thus the decompression sequence can easily be 
selected via a regular text file which constitutes the configuration for the decompression. 
Because of strict time requirements the program was improved for running time. This on the 
other hand has sometimes led to a trade-off between more efficiency and less beauty in 
programming. This means for instance that we used arrays instead of vectors even though 
vector objects would have been more adequate. 
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A detailed breakdown of the task of the program is the following: 
 

�� Read raw data from input files: The packets received by the on-ground receiving 
station are stored in files. This data has to be read and the packets contained in the data 
are collected. 

�� Check files for missing packets: The files are supplied in an unordered way. The files 
are put into right order and checked for missing data files. 

�� Check data for transmission errors: Every input file is checked for transmission errors 
by means of computing a checksum value. 

�� Appropriate buffering of the data depending on camera source: The checked packet 
data blocks are temporarily stored according to the data type. 

�� Reconstruction of the compressed entities: The original compressed data block 
generated on-board the telescope is reconstructed with the packet data.  

�� Evaluate decompression sequence from a config-file: The decompression sequence, 
which is the reversal of the sequence of compression algorithms used on-board, is read 
from a config file.  

�� Instantiate decompression-algorithm objects: Creation of a vector of image-
decompression objects according to the sequence read from the config file.  

�� Decompression of the data with these algorithms: The decompression methods 
contained in the decompression objects is applied to the compressed entity data. 

�� Output of decompressed data onto files on hard disk: The decompressed raw data 
blocks are stored in files on hard disk. This data files are now ready for further 
analysis and processing.  

�� Appropriate handling of the data in case of errors: The program is capable of handling 
the data in case of transmission errors, missing and corrupted data. 

�� Output of a logfile according to the decompression run: Information according to the 
computation is written to a logfile, which is stored in the output directory. 

�� Ability to test the result-data of the decompression: The program is able to test the 
output data with reference data if available. 

 
 
The program has basically two different running modes: First, a so-called single mode where 
all the already received packets of data are read and decompressed. Second, a so-called 
continuous mode where the data is processed consecutively, which means that the program 
keeps checking for new incoming data. Therefore the input and buffer part of the program has 
been realized with threads. The threads either run just once or consecutively depending on the 
modus the program gets started. 
 

4.1.1 Input and Collection of data packets 
 
The receiving station will put the received data packets into files, which then are present in an 
unordered way in the working directory on a hard disk. The program starts with reading the 
file list and the files itself. After reading the raw data from the files a CRC-16 CCITT 
checksum value is computed. This value is compared with the value which was generated and 
added to the packets on-board. If the checksum value differs from the value computed on-
board the corresponding decompressed data is marked with ERROR and a log file is created at 
the end of the computation. 
If the program notices missing files, which means packets are missing, it will determine the 
corresponding compressed entities. These are not processed but saved in one single file 



On-Ground Data Processing  10 

instead. That file is marked with INCOMPLETE and information about number, size and 
input files is stored in the error log file. 
 
If the checksum is correct the packet header is evaluated.  
 
This header mainly stores the following information: 
   

�� The total number of packets the CE has been split to 
�� The number (index) of this single packet 
�� Whether the CE was processed through Digital Signal Processor (DSP) 1 or 2   
 

A new CE is created every time a packet with index 1 is received. The CE is assigned to a CE 
information object which stores the unique internal CE number, the DSP, block and index 
information. At any time there will be 2 CE information objects - one for each DSP. Those 
are need for unique internal identification. All other packets are checked for the information 
in the packet header and assigned to the right CE. If missing files are detected, and it is not 
clear where a packet has to be assigned to, a new CE object is created as well. That will be 
stored in the error logfile. Once a CE object is completely set up with packets, the CE-header 
is extracted. Accurate information how the CE-header is set up can be found in [3]. Then the 
data without packet and CE header information gets decompressed. 
 

4.1.2 Decompression and Output of data 
 
As soon as the data in a CE has been put together completely the decompression of the CE 
will start. Several different compression algorithms are used on-board to compress the data. 
The system uses lossy and lossless compression algorithms. The exact reversals of the lossless 
compression algorithms are applied to the compressed data on-ground to get the original data, 
after lossy compression, back. A description of the basic function of the compression 
algorithms implemented so far can be found in the appendix. There is lots of literature where 
these algorithms are described closely [2,11,13]. New compression algorithms can easily be 
added to the program by adding a class with the new algorithm which implements the 
IImgDecompression interface. The selection of the used compression algorithms for a given 
set of data can be done with a config-file or even dynamically during the data reconstruction 
sequence. 
The data in a compressed entity consists of two parts: the Compressed DEC/MEC Header 
(CDH) and the Compressed Science Data (CSD), which itself contains the Compressed 
Science (CS) the Raw Channel (RC) data. The CDH is the final Header information, which 
contains control information. The exact form of this header and all its fields and their meaning 
is described precisely in [3]. The CS contains the real image data. The RC is some additional 
raw channel information. For each type of camera, that means spectroscopy or photometry, 
different sets of compression algorithms on-board and thus different sets of decompression 
algorithms on-ground are used.  
If there are options or parameters used for decompression algorithms they are added either at 
the beginning or at the end of the data. Some of the parameters used are not contained in the 
data and thus come from outside. Therefore the IImgDecompression interface constitutes a 
parameter array which is assigned to the decompression algorithm. 
When all the algorithms of a decompression sequence finish, the decompressed data is saved 
in files arranged in subdirectories in the output directory on hard disk. Each subdirectory is 
for one CE. The output directory has date and time information to distinguish it from others, if 
more decompression runs are done. The files have the file extension .raw. That means 



On-Ground Data Processing  11 

CDH.raw, CS.raw, and RC.raw. If upon program start the –f option is chosen the CS data is 
saved in frames rather than in one single file. The frame size depends on what camera the CE 
is from. The filenames in that case are Frame001.raw, Frame002.raw, etc. 
Any error happening during the computation will be saved in the error log file which is then 
placed into the output directory on the hard disk. In such a case also the decompressed data is 
accordingly marked. If, due to an error, the data cannot be processed at all it is saved in raw 
compressed form and the user is warned.   
 

4.2 Description of classes and class diagram 
 
In this section we will give a short description of the implemented classes. Figure 4 and 5 
show the class diagrams to give an overview. Note that these diagrams are not intended to be 
detailed class diagrams, but to show every class implemented and the most important fields 
and operations of the classes. 
The program is separated into two packages, dataprocessing.decompression which includes 
all classes for the compression algorithms and dataprocessing which includes all control and 
entity classes. 
 
 
 

 
 
 

Figure 4: Class diagram of dataprocessing.decompression package 
 
 
All Decompression algorithms are associated to the dataprocessing.decompression package. 
Every class that implements a new algorithm needs to implement the IImgDecompression 
Interface. If done so, simple change and upgrade of Compression methods are guaranteed. In 
the Config-File the algorithms get chosen by the class name. 
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Figure 5: Class diagram of dataprocessing package 
 
 

�� DataProcessing is the main control class of the program. This class has the main 
function so everything gets started from there. Upon program start, input and output 
directories are evaluated as well as OS-depending information. The decompression 
sequence from the config-file is interpreted with this class as well. Before terminating 
the program, the finish function is invoked which ensures that all data is processed 
correctly and none gets lost and also the log file is written with a LogWriter object if 
this is necessary. If upon program start one of the test options is selected a new Test 
object is created after the reconstruction of the data.  

�� LogWriter writes information according to the decompression run to a log file. 
�� Test allows for testing the resulting data of the decompression run. A Test object 

checks the reconstructed data with a reference data and computes reconstruction error 
measures.  

�� FileListener checks the working directory for incoming data. The files get selected 
via a FileFilter object which is initialized with the base filename given as a parameter 
at program start.  

�� DirectoryListener is used by FileListener, to read the directory information and 
provide the current reading directory which is especially important in case of –d mode. 

�� FileReader class is for reading the input files and for evaluating the checksum values. 
�� CRCTest does the computation of the CRC16 value.   
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�� FileCheck is the class which controls all the handling of the packets and appropriate 
buffering of the input data. A unique CE-number is created and assigned to the data 
packets. FileCheck evaluates the packet headers and assigns the Packet objects to the 
adequate CompressedEntity objects which themselves are stored in the 
CompressedEntityList. The end of this chapter shows Figure 6 which represents an 
overview flow chart of the collecting and buffering sequence.  

�� CompressedEntityList is the data structure for saving the CE’s. 
�� CompressedEntity is the class for combining all the data and operations for a CE. As 

soon as all packets are set in a CompressedEntity object, it starts its own 
decompression through invoking the decompression method in the 
IImgDecompression objects selected during evaluation of the decompression 
sequence stated in the config-file. This sequence, finally saved in an array of 
IImgDecompression vectors, starts the right decompression algorithms by using the 
classes in dataprocessing.decompression. 

�� IImgDecompression interface is necessary for a standardized use of compression 
algorithms.  

�� FileWriter saves the data onto hard disk upon decompression.  
�� Utility combines useful methods such as methods for transforming between little and 

big endian and so on. 
�� IConstants interface holds all constants, being relevant for the program, in one place.  
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Figure 6: Flowchart of data buffering 
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5 Evaluation of the Software 
 
Several tests have been done with the software. For this matter test data files were created 
with the telescope simulator program. This program is exactly the same software later running 
on the DSP of the telescope. On-ground it only differs in the fact, that it creates random image 
data instead of handling real image data. The process of lossy and lossless compression and 
the alignment of the data in packets is the same as it will be at the spacecraft later on. This 
simulator program outputs two types of reference data. First of all it creates the generate-files 
which are the frames of the random images before lossy compression. It also outputs the three 
main data files (DEC/MEC Header, Image data, Raw Channel data) after lossy compression 
but before lossless compression. Hence it’s possible to compare the decompressed files 
generated by the on-ground software with the reference data from the telescope simulator 
program. Generally, the test was to process the images from 24 hours, which is around 160 
MB of CE-data, without any failure or errors for the decompression. All possible running 
modes of the program have been used in this test, to check them independently. 
During this correctness test, the program was also tested for time performance. This was done 
on two different machines, one Linux and one Windows platform both on the same hardware, 
which was basically the following machine: 
AMD XP2600+ processor (1916 MHz) running on an ASUS-A7N8X main board with 
512MB DDRAM.  
The time performance on Linux is better than on Windows, especially on higher data rate. 
This is due to the file management of Windows. Thus more time for reading input data is 
needed on the Windows machine. The time for reading input files is about 30% of the total 
computation time when processing 160MB of CE data in Windows. Usually the time rate 
between reading and decompression is about 3:97. We recommend, saving the files in 
subdirectories and use the –d option for the program to improve time performance, 
particularly when using Windows. The tests have shown that it is the best way to save the 
files in directories which hold about 2500 files. It is to mention that the time needed for 
processing the data will slightly depend on the shape of the data. Generally the time needed 
for the decompression of 160MB of data, which later in reality would be approximately the 
amount of data from images collected in 24 hours, is around 90 minutes. The exact values are 
shown in Figure 7 and 8. 
 
 
 

# CE # Files Data size [MB] Time perfomance
in Windows [sec]

Time perfomance
in Linux [sec] 

Time perf. in Win. with 
subdirectories [sec] 

      
98718 200164 154 9150 5760 6145 
49389 100082 77 4963 2923 3642 
24695 50041 38 2431 1450 1312 
12347 24560 19 889 723 452 
6059 12280 9,5 270 272 272 
3029 6140 4,7 153 122 150 
302 614 0,5 14 12 14 

 
Figure 7: Time performance table 
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Figure 8: Time performance diagram 
 
 
The program was also tested on how to deal with errors in the input data. This could be 
missing data packets or corrupted data. Generally, in those cases the data will either be 
decompressed and marked or saved unprocessed. An error logfile is created with accurate 
information about the problem. 
If the program is started in –t testmode the software computes a reconstruction error measure 
between the reference files created from the telescope simulator and the decompressed data. 
The type of values computed are the ones described in section 2.2. These measurements 
describe the amount of information lost in a compression/decompression run. This is 
especially useful to apply on a lossy compression run to evaluate the lossy compression 
method. For instance one can evaluate the compression method with the reconstruction error 
versus the achieved compression ratio. Therefore we compute the reconstruction error 
between the original data files stored in the generate-files and the files before lossless 
compression or the files after decompression, assuming no fault during data processing with 
the OGDPSW. An example of images before and after lossy compression is shown in Figure 
9 - 11. Figure 12 shows the computed reconstruction error measures. Please note that these 
infrared type images are post processed with virtual colours. The lossy compression method 
in this case was to compute the average frame out of four frames. 
 
 
 

 
 

Figure 9: Original image sequence of an astronomy object 1 
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Figure 10: Original image sequence of an astronomy object 2 
 
 
 

        
 

Figure 11: Image 1 and 2 after lossy compression 
 
 
  

 MAE RMSE SNR PSNR 
Max values in Image Sequence 1 7,6 12,0 19,3 26,6 
Max values in Image Sequence 2 4,9 8,6 22,0 29,4 

 
Figure 12: Reconstruction error measures for both sequences 
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6 Conclusion and Outlook 
 
This paper describes the design of a software tool which can be used for handling and 
decompressing data which has been compressed, using various compression algorithms, and 
arranged in a way, which allows for transmission over channels like the internet or a satellite 
link for instance. It is described for use in an astronomy application. Hereby is it a part of a 
larger software package for handling astronomy information. This part of the Software 
provides the functionality for the first processing step of the received data from the telescope. 
This SW does all the necessary steps to provide raw data which later can be semantically 
analysed and further processed. It evaluates all parameter information for the appropriate 
decompression of the data. It supplies the on-ground system not just with the image data but 
also with additional and control information gathered at the sender.  
Further parts of the on-ground software are using this raw data and deal with reconstructing 
and analysing the real images collected with the cameras and sensors on-board the telescope. 
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A  Basics of Compression Algorithms used 
 
In this chapter we want to explain the basic functioning of the already implemented 
compression algorithms. 
 
A.1 Arithmetic Coding 
 
Arithmetic coding is a compression technique where each symbol in a set of symbols is 
assigned to an interval between 0 and 1 according to its probability of occurrence in the 
message. Arithmetic coding encodes a stream of data into a large binary fraction. It can 
achieve near-optimal entropy encoding [15,16]. 
 
The process of encoding can basically be described as follows: 
 

1. Determine the probability of each symbol in the message, which means determine the 
frequency of the symbol.  

2. Build a table which lists all the symbols and their assigned probabilities. That is build 
a range for every symbol which is sum of occurrence of the symbol divided by the 
total number of all symbols. The sum of all ranges is always 1. This table must be 
used in the same order for encoding as well as decoding. 

3. Take the first symbol in the message and select the range associated with it. 
4. Select the next symbol and multiply the range from the last symbol with the low and 

the high bounds of the range of the current symbol. This results in a new range. Add 
the results to the low value of the prior symbol. 

5. Continue doing this until all symbols are processed. 
6. Select any number of the resulting range. This is the encoded value. 

 
The computation of the coded value can be summarized as follows: 
 

�� Start with range [0.0 1.0[�  
�� Then for 1i �  where i is the index of the symbols in the message. 
 

[ ] [ 1] [ 1] [ ]assocRangelow i low i range i low i� � � � �  where:   [ ] [ ] [ ]range i high i low i� �  
[ ] [ 1] [ 1] [ ]assocRangehigh i low i range i high i� � � � �  

 
The following example shows an encoding procedure: 
 
 

Symbol Assoc. Range  Input Current Interval 
a [0.0 - 0.4[   [0.0 - 1.0[ 
b [0.4 - 0.6[  b [0.4 - 0.6[ 
c [0.6 – 0.9[  c [0.52 – 0.58[ 

EOF [0.9 – 1.0[  a [0.52 - 0.544[ 
   EOF [0.5416 - 0.5440[ 

 
Figure 12: Example for arithmetic coding with result values 

 
 
The coded value representing this short message is any value in the range 0.5416 to 0.5440. 
Let’s say for example 0.542. 
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The process of decoding which uses the same formulas can be written as follows: 
 

1. Check the range the coded message falls in. In our case 0.542 is inside 0.4 – 0.6 range, 
which yields the first symbol b. 

2. To get the next symbol we have to subtract the low value of the first symbol. This 
brings us to 0.142.  Because the range of b was 0.2 we have to divide the new value by 
0.2 which gets us to a value of 0.7. That value falls into the range 0.6 – 0.9 resulting in 
the second symbol c. 

3. We have to repeat this until we find EOF. This leads us to 0.367 which is in range   
0.0 – 0.4 resulting in symbol a. 0.367 divided by the range of symbol a, which is 0.4 
results in 0.9175 which is in range of the symbol EOF. 

 
As the length of the message increases the computed range gets narrower. It is obvious that, 
this would soon exceed the precision available at the computer.  
To perform arithmetic coding on a computer we have to use finite-precision binary integer 
arithmetic. More about arithmetic coding and how to implement it can be found in [2,3,11].  
 
 
A.2 RZIP Compression 
 
RZIP is a compression algorithm specially designed to achieve maximum compression ratios 
for little processing power. It is a lot faster and much more efficient than encoders using 
DPCM [3,12]. Hence it’s optimally feasible for this task.  
 
The Encoding in RZIP goes as follows: 
 
Hereby is: SOURCE:  source data of size SSIZE 

ALPHA: temporary working buffer of size SSIZE which is filled 
with 0 integers initially  

  DEST:   destination buffer where the coded data is written to 
RANGEWIDTH: the # of bits, the offset of a symbol is encoded in  

  RANGE:  the range to search for one symbol – which sets the offset 
  YES/NO:  1 bit symbol to determine if new symbol is started or not 
 
Symbols in destination are 32 bits, offset is RANGEWIDTH bits, YES/NO is 1 bit wide 
 

1. Select first symbol and output it immediately. Set ALPHA buffer to 1 at this index. 
2. Iterate through source and check if same symbol can be found somewhere again 

within RANGE. If yes code YES and code an offset, which represents the number 
of index between last and current symbol of this kind. Increase offset just if index 
has a 1 in the ALPHA buffer. 

3. If no symbol of the same kind can be found within RANGE code NO. 
4. Select next symbol in source where ALPHA is 0. 
5. Goto 2 until source buffer is finished. 

 
For example this source data with its ALPHA buffer: 
 

Source data A B B C A B A D 
Alpha array before coding A   0 0 0 0 0 0 0 0 
Alpha array after coding A 1 0 0 0 1 0 1 0 
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Destination data after coding symbol A:  AY3Y1N 
At the end the coded data will look like this: AY3Y1NBY0Y1NCNDN 
 
More information on the method of RZIP compression can be found in [3].  
 
 
A.3 Simple Zero Repetition Suppression (ZRS) 
 
ZRS is a compression algorithm to get rid of zeroes in the data. All it does is to ignore zero 
symbols in the buffer and instead output the number of zero symbols between two nonzero 
symbols. Note that this algorithm is only useful if there are more zero symbols than nonzero 
symbols in the data [3,14].  
 
How this procedure works can easily be shown in an example: 
 
A buffer like this  A 0 B 0 0 0 0 C 0 0 D 
 
Is coded to this:  A 0 B 1 C 4 D 2 
 
Zero count for the first symbol is always zero. Offset and symbols in destination are written in 
the same quantity of bits.  
 
 
A.4 Redundancy Reduction 
 
Before any of the compression algorithms are used two different methods for redundancy 
reduction are applied to the data. These two methods are Static+Dynamic and 
Temporal+Spatial Redundancy Reduction (SDRRED, TSRRED). These algorithms are 
described exactly in [3]. 
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B Abbreviations 
 
ARC   Arithmetic coding 
CDH   Compressed DEC/MEC Header 
CE   Compressed entity 
CSD   Compressed science data 
CR    Compression ratio 
CDH   Compressed DEC/MEC header 
DSP1   Digital signal processor 1 
DSP2   Digital signal processor 2 
DPCM   Differential pulse code modulation 
HSO   Herschel space observatory 
ISO   Infrared Space Observatory 
IR   Infrared  
IRAS   InfraRed Astronomical Satellite 
MAE   Mean absolute error 
OGDPSW  On-ground data processing software  
PSNR    Peak signal to noise ratio 
PACS   Photodetector array camera and spectrometer 
RMSE   Root mean square error 
RC   Raw channel data 
SNR    Signal to noise ratio 
SW   Software 
SDRRED  Static and dynamic redundancy reduction 
TSRRED  Temporal and spatial redundancy reduction 
ZRS   Zero repetition suppression 
 
 
 
 
C Manual of  the Program 
 
The name of the program (JAVA archive) is DataProcessing.jar. If one types  
java –jar DataProcessing.jar –help   the following help screen appears: 
 
Usage: java -jar DataProcessing.jar MODE [OPTION] FILEBASE 
MODE      -o for decompression of fixed set of files 
          -c for continuous decompression (keep checking for new files 
             and stop after 3 minutes without new data!) 
 
OPTION    -f for framebased Decompression of science data 
          -d for including files in subdirectories of working directory 
          -t for doing a testrun after decompression 
          -l for doing a testrun which computes also reconstruction error               

 measures for lossy compression    
 
FILEBASE  basename of files to decompress 
 
 
This help screen shows all the possible running modes with all the options 
available and describes them briefly.  
 


