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ABSTRACT 

The reduction of the x-ray dose that offers higher safety for the patient reduces 
diagnostic image quality. Recently, we have shown appropriate methods for the auto 
computation of the noise-estimate [1] and for the reconstruction [2] of dental panoramic 
images. The noise-estimate is calculated by a semi-empirical scatter-glare model of the 
photon projection-process and a wavelet based method for the subtraction of the energy 
of the noise-estimate from the energy of the panoramic image. The analysis of the 
reconstruction results stemming from the processing of a database of 50 ortho-pan-
tomographic images shows excellent improvement of contrast and detectability of 
diagnostic detail at reduced noise level.  

In this paper, the modeling of the semi-empirical scatter-glare model for the photon 
projection-process by Monte Carlo calculations is explained in more detail, and an 
improved Bayesian calculation of the posterior scatter-estimate is presented. 
 
INTRODUCTION 

In recent years panoramic radiography developed to one of the major complementary 
examinations in dentistry. However, dental radiographs are taken periodically and more 
often than any radiographs. A fact that coincides with higher public awareness of the 
risks associated with the exposure to ionizing radiation. New objectives on lowering 
dental caries, periodontal diseases and tooth loss, are currently devised by the World 
Health Organization for the year 2020 Oral Health Program. To minimize the impact of 
oral and craniofacial diseases on health and psychosocial development of individuals, the 
2020 Oral Health Program is arguing for early diagnosis and prevention.  

Even though the dosage of radiation is small compared to other types of radiographs, 
some people are still inflicted by dental anxieties, fears, and phobias against x-ray 
examinations. Therefore, lowering the dose, as well as providing sufficient information, 
regarding the procedure, are effective strategies to overcome the aforementioned 
obstacles. As a consequence of increased safety for patients, the quality of the resulting 
images degrades substantially, thus such images may suffer from relevance. 
Enhancement of relevant details and suppression of unwanted artifacts, such as noise and 
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other distortions, is the aim of reconstruction methods, which try to meet these 
contradictory requirements.  

In this paper a semi-empirical model for the generation of a spatially adaptive noise 
map is implemented under some simplifying conditions, which is cross checked with data 
from the NIST database [3] and Monte Carlo simulations by the GEANT4 simulation 
package. The projection scattering process at the atomic level is subdivided into a prior 
calculation part and a posterior one. The prior part generates a table of scatter priors, 
which is then used for the posterior calculation of a spatial noise variance map for an 
actual diagnostic image. As the noise contribution in the diagnostic image stems from 
scattered photons, which still survives all scattering events, the traveling paths of such 
photons are altered, thus, they are detected at random locations, resulting in scatter-glare 
fog. The removal of that scatter-glare fog enables an appropriate contrast enhancement. 

 
STATE OF THE ART 

Statistical models for images are described in [S97], whereas in [PS03] the 
application of Gaussian scale mixtures (GSM) to natural images is given. The estimation 
of noise itself is left open by many authors. A comparative study between six methods is 
shown in [O93]. A method for blind estimation of noise variance is given in [MJR90] and 
the references herein.  

Adaptation to unknown noise variance by a locally adaptive Wiener Filter was done 
by Lee [L80] using the spatial image domain. When the Lee filter is applied to a region 
hat contains signal activity (i.e. lines and edges), the filter reduces its smoothing 
characteristic, whereas in regions with constant intensity it responds with its initial 
smoothing characteristic. Thus, the filter has smoothing properties in that regions, while 
still preserving sharp details. The drawbacks are that it cannot detect weak detail and it 
leaves noise in the vicinity of edges and lines.  

Most approaches suppose the noise if of Gaussian nature; some suppose a Poisson 
distribution or a combination of both distributions. An overview of wavelet methods in 
medical image processing is given by Unser [UAL03]. Mallat [M89] founded by his 
work "A theory for multiresolution signal decomposition: The wavelet representation" 
the basic approach to obtain the discrete wavelet transform (DWT) from multiresolution 
analysis. 

In their seminal work Donoho and Johnstone [DJ94] , considered "ideal adaption via 
wavelet shrinkage" (i.e. VisuShrink), where for a N £ N image an universal threshold was 
proposed. The method truly removes the noise, but the image content is oversmoothed. In 
"the adaption to unknown smoothness" Donoho and Johnstone [DJ95] de¯ned 
"SureShrink", which is thresholding by applying level adaptive thresholds, a separate 
threshold is computed for each detail subband based upon SURE (Stein's unbiased 
estimator for risk), which applies to probable coefficients of noise the universal threshold 
of VisuShrink. Although the method exhibits good mathematical convergence, the visual 
results are not convincing.  

Vidakovic [V98] uses Bayesian methods to model the relevant properties of the 
DWT coefficients with prior probability distributions. Upon obtaining the likelihood 
function from a noise model the resulting (i.e. the posterior) distribution can be calculated 
from a sample distribution (i.e. the prior). Specifying a loss function yields estimation 
rules pursuant to the Bayesian decision theoretic approach. Figueiredo [FN01] 
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generalized the process of how signals can be manipulated by applying the DWT. 
Processing consists in manipulating the DWT coefficients, rather than the signal samples 
themselves, in three steps: (1) Computation of the DWT coefficients of the signal, (2) 
Performing some specified processing on the coefficients, and (3) Computation of the 
inverse DWT to obtain the resulting signal. 

In general, wavelet methods utilize that three steps and most of them differ only in 
the second processing step. In Goebel and Brändle [BG03] the application of filtering by 
coefficient shrinkage in the Fourier- and Wavelet-domain was investigated. It was shown 
that a Wiener filter applied directly to the wavelet coefficients yields better results in 
terms of preservation of sharp details, but the images were contaminated by artifacts. 
Brown [JB00] proposed an adaptive enhancement algorithm that uses the correlation 
between wavelet coefficients, at the same spatial position in successive resolution levels, 
in order to discriminate between coefficients arising from noise and those arising from 
signal features. Browns work was successful on mammograms to find micro 
calcifications in breast tissue for cancer prevention, but applied to DPR it changed the 
overall look of the radiographs, which was not acceptable from the view of the 
physicians.  

Nowak and Baraniuk [NB99] proposed a method of wavelet-domain filtering for 
photon imaging systems assuming Poisson statistics and cross validation by using N low 
photon count images to design an optimal wavelet-domain filter. Whereas the method is a 
common practice for astronomical image acquisition, the method can be used only for 
direct digital radiographic systems, because of the required high number N of detailed 
images. Naimuddin Shaikh [S89] proposed to use a convolution algorithm for estimation 
of scatter and glare in diagnostic radiology and have used a look-up table utilizing 
scatter-glare back-projection within the noise estimation model. 

Single parts of the proposed methods did already exist; however, the way of 
combining them, extending and filling gaps by means of new concepts appears to be new. 
From that point of view the following works are closely related to and are basics concepts 
to the proposed approach of this thesis, although the concepts are adapted to the purpose. 
The simulation of x-ray scattering, using the same parameters as used for the real 
imaging process, enables to produce a forward projection estimate for the photon scatter. 
That estimate can be used, by a back projection process, for the generation of a noise 
image estimate. Plancherel's Theorem ensures the conservation of energy if images are 
transformed to/from the multiresolution domain. Therefore, the noise image estimate can 
be subtracted from the original x-ray image to enable better image quality (without or 
with lesser noise contribution). As a fact, the achieved better image quality paves the way 
to reduce the photon rate during an x-ray imaging process, which lowers the dose for the 
patient.  

 
PROBLEM DEFINITION 

The research question of the herein proposed approach aims in: ”finding a solution 
to achieve high diagnostic image quality in concurrence to the reduction of the 
radiographic dose.” This paper proposes an answer to that research question by assessing 
basic requirements; and generating a solution by merging the research fields of physics, 
medicine, statistics, and image processing in a multidisciplinary manner. 
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Figure 1: A comparison of the effects caused by lowering the radiographic dose. The left 
image shows an ordinary standard radio graph stemming from a human dummy head and 
the right image shows the same, but with lowered dose. One can see the degradation 
caused in the right image compared to the left one. 
 
Figure 1.1 shows twice the same region of a radio graph of a human dummy head, but 
one (at the left) for a normal filtration, and one (at the right) for additional filtration to 
lower the dose. Even, the image values are scaled contrast for printing, the image at the 
right is more degraded by noise, since the signal to noise ratio (SNR) is lowered.  
The effects that mostly contribute to the deterioration (degradation) of image quality and 
the corresponding issues are identified as: 
 

1. The systematic non-homogeneous illumination (NHIL) from the x-ray source: 
the photon rate is increased to permeate the spine region during a panoramic 
scan, which causes a multiplicative influence on the image values. 

2. The contrast adaptation of the human visual system (HVS) to the level of back-
ground illumination: the psychophysical detection of differences in contrast (i.e. 
detection thresholds) by the human eye is modulated in a nonlinear way by the 
intensity of the background. 

3. The impact of scatter noise (SCN) statistics: the true image statistics are still 
rather inconclusive; inappropriate noise filtering may degrade the image 
furthermore. 
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The De-noising Problem  
Common methods to eliminate contributions of noise are deconvolution techniques, 

applied in the context of linear or non-linear filtering. Classical filtering, designed for the 
suppression of high frequencies, prove as inadequate as they fail to preserve information 
regarding details. Adaptive filters (e.g. Wiener Filter) have problems to distinguish 
between noise variance and variance from the informative image content.  
Among others, the most popular method for image denoising is multiscale filtering, based 
on the wavelet transform. The basic idea is to decompose an image according to different 
frequency bands and at different scales, by a non-decimating multiresolution transform, 
resulting in an over complete (i.e. redundant) translation invariant representation of the 
transformed space. The deterministic image content is represented by a set of a few 
stronger coefficients, whereas the noise is distributed across all coefficients at weak 
intensity. 
To illustrate the problem, in Figure 2, a classical denoising approach is performed by 
wavelet coefficients thresholding using a usual noise variance estimate. 
 

 
 
Figure 2: Comparison of effects for classical denoising: A high resolution CT image, as a 
reference (shown by the left image), shows the ideal view for a diagnostic image with a 
high level of detail; Gaussian and Poisson noise is added to the CT image (shown by the 
middle image), details are still observable; From the classically denoised version of the 
CT image with added noise (shown by the right image), one can see a typical blurring 
effect of the edge information. 
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A classical denoising approach is performed by wavelet coefficients thresholding using a 
usual noise variance estimate [DJ94]. Consequently, Figure 2 rightmost image shows the 
majority of noise being eliminated, while the resulting image is blurred. Within the weak 
wavelet coefficients there is hidden edge information, therefore fine details in the image 
are lost.  
 
Panoramic Projection Radiography 

A main tool in dental radiography is the x-ray projection image that reveals the inner 
structure of bone and teeth. Dental Panoramic Radiography DPR is a technique where the 
entire dentition is projected onto a sensing device. 

 
Figure 3:  Principle Schema of a Dental Panoramic Radiography DPR System. ΣX 
represents the x-ray generator; X the x-ray beam; r the beam; and S the sensor.  
 
 In principle, there are three types of sensing devices: direct or indirect x-ray films; 
photostimulable storage phosphor (PSP) plates; and solid state semiconductor sensor 
arrays. Source and detector are in opposition, rotating around the patients head. The focal 
area of the x-ray beam describes a planar curve, which is standardized for the human 
teeth and jaw. The photon rate is increased near the jaw center to permeate the spine 
region, during a panoramic scan, symmetrically, which causes a multiplicative influence 
on the image values. From the primary poly-energetic x-ray beam, photons are absorbed 
(i.e. scattered) along the path between source and detector by the patients matter (muscle, 
fat, bone, air, or contrast agents). The photon attenuation of each type of matter depends 
on its elementary and chemical composition as well as on the beam. 
Image degradation is caused by defected primary photons due to scattering events, which 
still reach the sensor, resulting in scatter-glare fog. 
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THE NEW SEMI-EMPIRICAL MODELLING APPROACH 
The authors have recently shown in [8] that the noise statistics of dental OPT images 
follow a mixture of two generalized Gamma distributions, rather than pure Poisson 
distributions, where one of them stems from photon attenuation scatter (i.e. the absorbed 
photons) and the other from the photon scatter-glare (i.e. photons whose traveling paths 
have changed, and have not been absorbed), which is accountable to the noise 
contribution. 
 
Deriving the Image Model by Blind Source Separation (BSS) 

The principally ill posed, since inverse1, process of BSS in general is the separation 
of a set of n statistically independent signals s = [s1 … sn] from a set of m observed 
signals x = [x1 … xm], tied together by a mixing matrix A, leading to a solution x = As. 
This yields a solution, where the image is treated as a mixture from (at least two) 
independent sources, a photon source I0 that is attenuated by matters, and a background 
B. During a diagnostic radiological investigation the attenuation by the patient matter is 
of interest, but the aggregation of all sources together of no-interest is classified as the 
background B. We are interested in the pure diagnostic information, which we are not 
able to measure directly, since it is contaminated by the background equivocation. The 
BSS idea starts with observations that can be made objectively by the equipment. Thus 
we get the linear equation system  

 
with I1 and I2 as two independent observations (i.e. I1 is an image taken without 
phantom/patient, thus it is the background illumination image; I2 is the actual diagnostic 
image of the phantom/patient) from an experimental setup, using a known phantom; I0 is 
the unobservable output intensity of the x-ray tube; and A is the mixing matrix, 
determined by the experimental setup. Evaluating the linear equation system and treating 
                                                           
1 We call two problems inverses of one another if the formulation of each involves all or 
part of the solution of the other. Often, for historical reasons, one of the two problems 
has been studied extensively for some time, while the other has never been studied and is 
not so well understood. In such cases, the former is called the direct-problem, while the 
latter is the inverse-problem (Keller, 1976). The linear inverse problem yields a discrete 
linear algebraic system, which may provide a mathematical solution. For example, the 
information loss due to an imaging filtering process cannot be derived from the 
remaining data. Therefore, some additional information is needed, namely a priori or 
prior information. Such a problem is called well-posed, when its solution is unique, exists 
for arbitrary data and is continuous. A small variation in the data should not cause a 
considerably variation in the solution. The crux of the difficulty is that even if a 
mathematically tractable solution exists, however, it may happen that it is not acceptable 
from a physical point of view. Consequently, the problems that are not well-posed are 
called ill-posed, incorrectly posed or improperly posed. 
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all variables, except mixing matrix A as random vectors; and utilizing the expectation of 
the random vectors, because the digitized images are in fact the result from an 
expectation operation, yields 

 
with E{.} symbolizing the expectation2 operator; and I0 is estimated by a Monte-Carlo 
simulation of the energy spectrum of the x-ray generator, accordingly to the actual 
acquisition parameters used. The calculation of the patient's absorption (ABS) data yields 

 
with   the reconstructed diagnostic image. The result indicates the need for an appropriate 
estimate for the background B, scaled by the factor (a22 - a12) derived from the (i.e. ill-
posed) transformation matrix A. The background B is then classified by exerting a 
multiplicative behavior of the elements of matrix A on the photon load I0, with its 
expectation E{I0} is varying accordingly to the systematical intensity modulation 
regarding the compensation of the contrast loss caused by the spine bone density and the 
non-linear influence by scatter noise. Unfortunately, due to the high nonlinearity of the 
matrix coefficients’, this form of the background estimate is mathematically intractable. 
Therefore, one can derive another solution in introducing the transmittance T 

 
if one assumes the informative content of I1 as informative only as its informative content 
is at low frequencies only, and taking the expectation from E{I1} by a median to remove 
the background, in the denominator, yielding 

 
The last term is that of noise, which can be exploited by the application of a Gaussian 
scale mixture model (GSM). A GSM is a model of a mixture of independent infinite 
Gaussians, scaled by a hidden scale factor ξ  to the variance value of evidence, thus 
yields 

 

                                                           
2 The expectation operator is defined as  with X is a random 
variable, defined on its probability space 
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with T symbolizing the noise free transmittance image, ξ is the scale factor, x and y are 
pixel coordinates, and N(0; 1) is locally Gaussian noise with mean zero and a variance 
equating to one. Thus, subtracting that field of random will properly reconstruct the 
transmittance image T. Therefore, for eliminating the impact of noise in the diagnostic 
image applying an additive noise model will suffice if an artificial, spatial adaptive noise 
estimate for the original noise can be generated. To ensure statistical independence from 
the original image, the noise estimate will be exploited from a physically convenient 
simulation of photon-scattering at the atomic level by a semi empirical Bayesian model, 
where the prior-distribution is calculated offline for the entire diagnostic energy range 
(i.e. for instant use). The posterior-distribution is then calculated by using maximum 
likelihoods (ML) generated from an actual diagnostic image and a background image, 
yielding a coherent factor noise map, which is used to generate the artificial noise 
estimate as an infinite realization of an infinite mixture of Gaussian distributions (i.e. a 
Gaussian Scale Mixture). 
 
Scatter Event Likelihood Decomposition by Monte Carlo Simulation 
Panoramic x-ray systems are using poly-energetic x-ray, thus the absorption coefficients 
by scattering are highly nonlinear and are depending on the photon energy (see Figure 1).  
For the estimation of the scatter-glare noise contribution, the knowledge of the scatter 
interaction is crucial. X-ray photons from the source with Poisson statistics are absorbed 
along the path between the source and detector by the patient's matter (muscle, fat, bone 
and air or contrast agents; see Figure 2). 
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 The scattering of the photons, by photoelectric, Compton and coherent interactions3, 
causes two effects due to their crossing of matter: firstly, an attenuation of the photon 
beam by a different type or thickness of matter (that excites the generation of the 
radiographic image); secondly, surviving scattered photons darken the film while 
carrying no useful information, because their path is randomly altered, resulting in 
scatter-glare noise.  
Here again, we encounter an ill-posed problem, because during the forward projection, 
the scatter events sum up in the detector, and the resulting projection image represents the 
scattering likelihood4, since all of the information in all occurred scatter events is 
contained in that likelihood function. Thus, in an actual diagnostic image, the likelihoods 
are known from the pixel values, but nothing about their spectral composition. Therefore, 
a decomposition approximation method is developed by the simulation of an x-ray 
projection process.  
Utilizing the GEANT4 framework, starting with the predefined “PhotonProcesses” from 
the GEANT4 extended example section, and defining two setups for the geometrics of an 
aluminum step-wedge and a PMMA flat phantom, generates a table of scatter-glare 
likelihoods – i.e. simulated images of the step-wedge and the PMMA phantoms. The 
scatter events from the photoelectric, Compton and coherent interactions are recorded 
prior to its summation in the Detector. A type of look-up table is generated that can make 
a projection in forward direction – that is the summation of the three scatter events – and 
can be used also for a back projection – that is the recall of the recorded scatter event 
triplet for a desired likelihood (i.e. a image pixel value).  
An alternate model, utilizing the TASIMP software as x-ray generator and an 
approximate implementation of the scatter characteristics accordingly to Figure 1 is 
implemented in MatLab (Mathworks Inc.) and the following modeling parameters: 
 

 
 
with E is the photon energy, Z is the effective atomic number. The result of that model, 
compared to the NIST data base give a good performance in the restricted energy range 
for diagnostic panorama images. Figure 3 shows a comparison between the scatter event 
probabilities achieved by the simplified model and data from the NIST database. 

                                                           
3 Diagnostic energy range 5..100keV 
4 Likelihood is the hypothetical probability that an event that has already occurred would 
yield a specific outcome. The concept differs from that of a probability in that a 
probability refers to the occurrence of future events, while likelihood refers to past events 
with known outcomes. It is the conditional distribution P(B|A) of B given the data A. 
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Figure 3: The simplified Probabilistic Photon Scatter Model. The total scattering by the 
exploited model, for aluminum and PMMA, is related to the NIST database. 
Photoelectric scatter is shown in blue for aluminum for µ and µen (the energy transfer 
coefficients), and in red both for PMMA. 
 
In Figure 3, the total scattering for aluminum and PMMA in terms of the linear 
attenuation coefficient µ applied as 

 
is related to scattering data from the NIST database [SH95] (dotted lines). Up to 40keV 
the energy transfer coefficients µen are also in good relation to the photoelectric 
absorption. Above that point, the model has an upcoming divergence, especially for 
softer matters (i.e. PMMA), but their interaction probability is quite low, thus the error 
may be neglected for the proposed application in medical imaging. 
 
Estimating the Spatially Adaptive Noise Map  
Figure 4 shows an overview of the developed estimator, which is a composition of a prior 
calculation part and a posterior one. The prior part generates a table of scatter priors, 
which is then used for the posterior calculation of a spatial noise variance map for an 
actual diagnostic image.  
The x-ray energy spectrum E, generated by the TASIMP simulation program [BS97] is 
available as a table of normalized photon flux, which is parameterized to include the 
geometrical situation, the exposure time, the milliamperage and the maximum energy (1). 
The forward projection (2) results in a table of pixel values (3), and also in the 
corresponding table of scatter priors (4). The look-up table realizes the backward 
projection. In the context of Bayesian probability theory and statistical inference, its 
alternate form may be exploited for the calculation of distributions 
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with fpost(x|y) is the posterior distribution of X given Y; flike(y|x) is the likelihood function 
of X given Y; fprio(x) is the prior distribution of X; and fnorm (y) is the marginal distribution 
of Y. The table of scatter priors (4) contains the results of the scatter-estimates for each 
possible likelihood value (i.e. pixel). The background estimate (5) together with actual 
pixel values (6) and the scatter-priors (4) calculates the scatter-glare amount in (7) by  

 
As the result, an adaptive spatial map of the diagnostic noise variance is produced. The 
map is used to generate the noise estimate by scaling the variance of a random Gaussian 
noise field with zero mean and variance one N(0; 1). 

 
Figure 4: The Scatter Estimation Model has two main parts: the upper one is the prior 
part for the calculation of a scatter prior table. Module1 generates the x-ray energy 
spectrum by using the TASIMP simulation program, which is part of XCOM. The photon 
interactions are implemented in Module2, and the simulation of the detector yields the 
table of pixel values as Module3. The outcome of the prior calculation is the table of 
scatter priors in Module4. The lower part of the model is dedicated to the posterior 
processing. A background image as Module5; an actual image as Module6 and the 
scatter-prior table (i.e. Module4) are used to form an estimate of the scatter glare in 
Module7. The estimate of the scatter glare forms the spatial noise estimate. 
In particular, in the denoising approach, the noise function is modeled by the Nakagami-
m distribution. Stressing Plancherel’s Theorem, the energy of the noise estimate is then 
subtracted from the noisy transmittance image in the wavelet domain (see Fig. 5). The 
reconstructed estimate of the transmittance provides reduced noise contribution by 
preserving diagnostic detail. The result of the noise estimation approach was used by 
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Goebel et. al. in [7] for OPT image restoration. The approach was tested against classical 
wavelet hard- and soft-thresholding methods. It was shown that it performed substantially 
better than the former in terms of modulation transfer function (MTF) and signal to noise 
ratio (SNR). 
 

 
Figure 5: The subtraction of the noise estimate from the diagnostic image mixture by 
utilizing the conservation of energy within the wavelet space. The model exploits an 
empirical Bayesian approach for the auto-calculation of the backward scatter projection.  

 

  
Figure 6: A dedicated noise coherence factor x(x; y) image. In the areas of interest, the 
factors are below 1, which causes softer denoising. 
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Figure 7: The noise estimate to Figure 6 

 
After the posterior is calculated, using the likelihood and the prior. The result is a 
coherence map (see Figure 6), which reflects the dependence of the noise on the actual 
diagnostic image content. In the coherence map, the scatter-glare is estimated, which 
forms the rule that specifies how much denoising is applied to the mixture image. In 
Figure 6 a factor below one specifies less denoising, which is accomplished inside the 
teeth, while a factor greater than one forces stronger denoising in the areas between the 
teeth. From the coherence map a Gaussian scale mixture (GSM) is exploited, where the 
coherence factors calculates up for the hidden scale factor ξ(x; y). That ξ (x; y) scales a 
Gaussian noise image field with predefined noise N(0; 1) {zero mean, variance one} and 
forms the noise estimate in Figure 7. The noise estimate of Figure 4.11 is subtracted by 
(3.9) in the multiresolution domain from the mixture image, after the multiresolution 
reconstruction. 
 
The Relative Dose Assessment 
There is no simplistic approach to determine the radiographic dose, because of the 
nonlinear behavior between polyenergetic x-ray beam and photon attenuation. Therefore, 
in this section, an experimental assessment is presented. For the assessment of the 
absorbed dose the comparison of the imparted intensity of a human dummy head 
phantom is used. The assessment is a relative assessment how much the radiographic 
dose is lowered by taking two consecutive radiographs from the fixated phantom with 
and without the 6 mm aluminum filter. The human dummy head is masked to prevent 
from including stray radiation. The linear dose reduction factor is calculated by the 
fraction of integral of the imparted intensities, which means that the additional aluminum 
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probably reduces the radiographic dose by a factor of about 2:2 at x-ray parameters 
73kVp and Milliamperage 15 mA. 
 
CONCLUSION 
A procedure for estimation of the noise in panoramic x-ray images, where the local 
statistics are calculated from a database of 50 images. A noise model was created, with 
the main purpose to achieve optimal image quality after denoising. The noise model 
supports the separation of the information of interest by ideas stemming from Blind 
Source Separation. The method opens the possibility for reduced patient dose, because of 
the good reconstruction properties of the approach of this thesis. The image degradation 
by the reduced photon count could be compensated, furthermore it was shown that it is 
possible to remove the noise contribution and concurrently keep the diagnostic 
information. Blurring effects, known from other methods are only minor perceivable. 


