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Abstract 

This paper proposes a method for clustering 
asynchronous events generated upon scene activities by a 
dynamic 3D vision system. The inherent detection of 
moving objects offered by the dynamic stereo vision 
system comprising a pair of dynamic vision sensors allows 
event-based stereo vision in real-time and a 3D 
representation of moving objects. The clustering method 
exploits the sparse spatio-temporal representation of 
sensor’s events for real-time detection and separation 
between moving objects. The method makes use of density 
and distance metrics for clustering asynchronous events 
generated by scene dynamics (changes in the scene). It 
has been evaluated on clustering the events of moving 
persons across the sensor field of view. Tests on real 
scenarios with more than 100 persons show that the 
resulting asynchronous events can be successfully 
clustered and the persons can be detected.  

1. Introduction 
Event-based stereo vision [2] aims to duplicate the human 
vision system in reacting to scene dynamics by generating 
events including the depth information, using a pair of 
vision sensor. An event-based 2D Dynamic Vision Sensor 
(DVS) was introduced in [9] including a set of 
autonomous self-spiking pixels reacting to relative light 
intensity changes. Its advantages include high temporal 
resolution, extremely wide dynamic range and complete 
redundancy suppression due to included on-chip 
preprocessing. It exploits very efficient asynchronous, 
event-driven information encoding, Address-Event 
Representation (AER) [4], for capturing scene dynamics 
(e.g. moving objects). 
Based on [9], an event-based 3D vision has been realized 
using a stereo sensor, with a pair of DVSs and a stereo 
matching algorithm for calculating depth information, 
which is reported in [2] and [11]. Such a system exploits 
the on-chip pre-processing offered by the DVS for 
efficient and real-time scene vision in 3D with regards to 
two aspects: Firstly, the data volume is reduced as 
compared to conventional image frame-based stereo 

systems due to the efficient representation of scene 
dynamics using on-chip pre-processing of the visual 
information. Indeed, real-time stereo vision is 
computationally demanding, implying the allocation of 
large and costly processing and memory resources. The 
dynamic vision sensors inherently support on-chip edge 
detection with a low data volume by means of massively 
parallel focal plane processing, to allow real-time 3D 
representation. Secondly, the sensor sensitivity to the 
relative light-intensity changes allows robustness against 
illumination conditions. Furthermore, since it is not 
necessary to integrate light as in frame-based sensors, the 
sensor is also highly sensitive to scene dynamics in weak 
illuminations with high temporal response. 
Spatio-temporal data processing has been introduced by 
Fahle [5] and Adelson [1] in the early 80’s. However, 
methodologies for representing low-level spatio-temporal 
cues and high-level models suitable to explain spatio-
temporal evidence are still scarce. The main reasons why 
joint spatio-temporal processing has not been addressed in 
detail originates from different factors: (i) digital 
computers operate using “atomistic” principles, where 
operations are broken down into sequence of steps and 
processing is performed independently for each step on 
discrete data; (ii) common vision sensors provide temporal 
data sequences in form of distinct images (frames) and 
(iii) the computational burden imposed by the large 
amount of data in the space-time volume has been a 
limitation for efficient operation. 
The space-time processing approach is an appropriate 
strategy for the robust analysis of visual data 
encompassing dynamic processes such as motion, variable 
shape, and appearance, whereas traditional frame-based 
approaches require additional modeling tools (e.g. Markov 
chains) for dynamical processes. In the development of 
methodologies for the space-time domain over the last two 
decades, the research focus has mostly remained on the 
development of low-level cues, which have incrementally 
become more descriptive (e. g. transition from simple 
motion cues to space-time shape). 
Those efforts have been invested for automated extraction 
of relevant information (in space and in time) from image 

 



 

sequences using frame-based image sensors. Mainly due 
to the temporally (rate) and spatially (frame) discrete 
nature of digital image sequences provided by these 
standard sensing devices, a constant data volume is 
continuously produced. Such frame-based sensors are not 
well suited for space-time processing as (i) the data 
contain substantial temporally redundant information 
within each frame, and (ii) temporally discrete with coarse 
resolution (typically 25 frames per second), and (iii) 
increasing the temporal resolution (thus the amount of 
visual data) leads to prohibitive computational 
complexity. 

This paper proposes a clustering method for the DVS’ 
events capable of clustering large amounts of continuosly 
streaming asynchronous data, represented in a spatio-
temporal domain and its application for real-time object 
detection in real surveillance scenarios towards a compact 
remote stand-alone system. Besides the stereo sensor and 
the processing unit, the developed system also includes 
this event-based clustering algorithm, which is 
demonstrated for surveillance applications. The paper is 
structured as follows: Section 2 provides a brief review of 
the architecture of the event-based 3D vision system. The 
clustering method using the sensor data is presented in 
Section 3. Section 4 describes evaluation results on 
synthetic data as well as real-world recordings.  A 
summary is provided in Section 5 to conclude the paper. 

2. Dynamic Stereo Vision Sensor 
This section briefly describes the existing dynamic 

stereo vision sensor reported in [2] and [11] including data 
examples generated by the system. The system, including 
the sensor board, DVS chip and DSP board, is depicted in 
Figure 1. It includes two DVSs as sensing elements [9], a 
buffer unit consisting of a multiplexer (MUX) and First-In 

First-Out (FIFO) memory, and a digital signal processor 
(DSP) as processing unit.  

The DVS consists of an array of 128x128 pixels, built 
in a standard 0.35μm CMOS-technology. The array 
elements (pixels) respond to relative light intensity 
changes by instantaneously sending their address, i.e. their 
position in the pixel matrix, asynchronously over a shared 
15 bit bus to a receiver using a “request-acknowledge” 2-
phase handshake. 

Such address-events (AEs) generated by the sensors 
arrive first at the multiplexer unit. Subsequently, they are 
forwarded to the DSP over a FIFO. The DSP attaches to 
each AE a timestamp at a resolution of 1ms. The 
combined data (AEs and timestamps) are used as input 
stream for 3D map generation and subsequent processing. 

Figure 2 depicts a space-time representation of one 
DVS’ data, resulting from a two persons crossing the 
sensor field of view. The events are represented in a 3 D 
volume with the coordinates x (0:127), y (0:127) and t 
(last elapsed ms), the so-called space-time representation. 
The bold colored dots represents the events generated in 
the recent 16 ms. The blue and red dots represent spike 
activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from the 
person motions, respectively. The small gray dots are the 
events generated in the elapsed 1.733 seconds prior to the 
recent 16ms. These highlight the event path in the past 
1.733 sec of the moving persons, which is an ideal basis 
for clustering and tracking in space and time. 

A description of the algorithm for real-time depth 
estimation is given in [2] and [11]. Figure 3 shows an 
example of a visual scene imaged by a conventional video 
camera (top left) and its corresponding AEs using a pair of 

Figure 1: Dynamic stereo vision system device. In the
lower left corner the DSP Bf537 and the sensor chip are
shown. The DSP is mounted on the back of the board. 

Figure 2: Event representation of scene dynamics (2 
persons crossing the field of view) in a space-time domain 
using 1 DVS. 

 



 

DVSs (top middle and top right) rendered in an image-like 
representation. The white and black pixels represent spike 
activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from one 
persons motions, respectively. The gray background 
represents regions with no activity in the scene. The non-
moving parts in the scene do not generate any data. The 
processing unit (DSP) embeds event-based stereo vision 
algorithms, including the depth generation or the so-called 
sparse depth map. The resulting sparse color-coded depth 
map of the scene depicted in Figure 3(left) is provided at 
the bottom in Figure 3.  

3. Real-time Spatio-temporal Clustering 
algorithm 

The 3D DVS continuously and asynchronously generates 
events as reaction to moving objects crossing the sensor 
field of view. The objective of the proposed clustering 
method is to group together events belonging to the same 
moving object. It is therefore assumed that objects are 
characterized by following statements: (i) an object is 
determined by a set of address-events generated by an 
individual real-world object, a person for instance. (ii) 
Objects can be of arbitrary but limited size in x-y at any 
time. (iii) The distribution of AEs within an object may be 
sparse, as AEs are mainly generated by the edges of an 
object. (iv) Objects evolve in time, as they are moving 
through the sensors field of view. 
It was of great interest for us having a clustering method 
which can deal with large amounts of asynchronously 
streaming data in real time at the same time demanding 
little memory and processing power, since using the DVS 

a single object can result in generation of starting from 10 
thousands AEs per second. For analysis the clustered 
objects’ events can be further used for high-level 
computer vision tasks like recognition and classification. 
Figure 4 provides an exemplary overview of processing 
steps for use of the clustering algorithm in a recognition 
application. The feature extraction and recognition 
application are out of the scope of this work such that only 
the spatio-temporal clustering is described.  

Figure 4: Overview of the spatio-temporal processing steps 
and data flow for demonstration use in a recognition
application. 

We use a combination between density-based [10] and 
distance based clustering for robustness. Similarity 
between AEs is given by a distance function f(Cluster,AE) 
calculating the distance of the AE to the cluster center and 
expressed in the assignment of the AEs to the same 
cluster.  

Figure 3: Still image of a person from a conventional video
camera (top left); the corresponding AE a pair of dynamic vision
sensors (top right); resulting event “sparse” depth map (bottom). 

The metric used is the projected Manhattan distance in 
space-time (x,y,t) between the pixel coordinates of the AE 
and the cluster center to a 1-dimensional vector. The 
cluster center is defined as the moving average of (x,y) 
coordinates of the assigned AE’s. The clustering input 
data is a stream consisting of the temporal sequence of 
AEs having (x,y) coordinates, their polarity “p” (OFF or 
ON), the timestamp “t” and the reconstructed depth “z”. 
The event stream is neither stored for iterative processing 
nor grouped in frames. For each AE, a cluster assignment 
will be evaluated once; afterwards, the AE will be 
discarded. The actuality of a cluster is given by the 
timestamp of the latest assigned AE. The clustering 
method is comprised by following steps, which are 
performed for every AE: 
 
1. Update the density matrix of AEs 
2. Update the radial dilation of all existing cluster 
3. Assign AE to a cluster 
4. Update the properties of the selected cluster 

 
The following definitions characterize the proposed 
clustering method: 
 
� Density matrix: it provides the frequently generated 

AEs in the x,y,z coordinate system. In figure 5 (right 
image) an example of a density matrix is shown as 
color coded image, where the light blue shows low AE 
density and the red shows high AE density. 

 



 

Figure 6: Overview of the clustering method.

� Radial cluster dilation: it provides a measure of the 
object dimension. It is determined by the distance 
between the cluster center and the location of a point 
where the radial cluster density drops beyond a certain 
threshold. The radial cluster density is the projected 
AE density related to a cluster center. 

 
For every point in the sensor array/ every AE, we can 
calculate the distance �P to every cluster center in the 
direction of x and y.  
 

�P: {dx; dy} = (xcluster – xae; ycluster – yae) (1) 

 
A direction-independent distance value R will be 
evaluated regarding the expected form of the cluster. This 
value is the radial distance value. The form of the cluster 
is defined through the dilation boundaries DX and DY 
forming a hexagon, DX and DY can be given as 
parameters. 
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The AE distances are used to calculate the AE frequencies 
in relation to the radial distances 
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Figure 5: Rendered image with events accumulated for 20
ms including the depth information (left image) and density
matrix (right image). 

Where � is the radial density of the cluster C and 
distance R as a sum of density distances of all AEs at 
distance R(AE,C). The radial density can grow within the 
object and drop outside the object as long as the cluster 
center is located in the object center. In this case, the 
cluster radial dilation (object size) can be determined 
(using a certain threshold).  

 



 

3.1. Assignment Policy 
An overview of the clustering method is provided in 
figure 6. The cluster assignment policy is based on 
information derived (i) from global AE and cluster 
properties (with all AEs included) consisting of global 
cluster properties for cluster size calculation and global 
AE properties for noise suppression and (ii) from local 
cluster properties (only own cluster’s AEs included) like 
size, weight and number of assigned AEs. 
AEs may be filtered first by their calculated distance z in 
order to remove non relevant information (application-
dependent) like e.g. shadows. Every generated AE will 
then imply the update of the density matrix and of the 
radial density of every cluster. Notice that processing one 
AE results in strengthens the size of every existing cluster. 
While clusters far away from the AE will be slightly 
affected due to the consequently large radial distance, 
clusters near to the AE will get more influenced. The AE 
assignment is calculated according to local clusters 
properties, which are detailed as follows: 
 
� If local density is low, the AE is considered as noise 

event and therefore discarded. 
� The radial distance to every cluster is calculated 

according to formula (1) and (2). 
� The propagated strength (influence) of each cluster on 

the AE is evaluated. The evaluation function depends 
on the AE’s distance, the radial dilation of the cluster 
and the weight of the cluster. This latter is calculated 
from the sum of all so far assigned AEs (number of 
AEs in a cluster). A cluster will be neglected when 
the radial distance exceeds the maximum object size. 

� The AE will be finally assigned to the most influencing 
cluster updating its properties. The global cluster 
dilation and selected local properties affect the cluster 
assignment, i.e. higher values (in size, weight ...) 
increase the probability that an AE is assigned to a 
cluster. In case the AE does not fit to any existing 
cluster, a new cluster can be created when the local 
density at the AE’s location exceeds a dedicated 
threshold.  

3.2. Description of algorithm characteristics 
The individual steps of the clustering method (cluster 
creation and AE assignment) are further detailed in this 
subsection as follows:  
 
� Cluster definition: the cluster represents a bulk of 

frequent AEs, which have density-based 
interrelationship around a center. By that, the stability 
of a cluster increases when the density of AEs in the 
object center is the maximum. 

� Pair-wise similarity:  depends on the cluster strength 
within the AEs locations. The similarity is not 
explicitly calculated but derived from the assignment 
to a common cluster.  

� New cluster creation: a cluster is created whenever an 
AE could not assigned to a cluster, because it lies 
outside the maximal size of all existing clusters,  and 
the local density at the AEs location exceeds a 
threshold.   

� Terminating of a cluster: A cluster can be removed 
whenever it is not timely actual anymore i.e. no new 
AEs were assigned to it for a dedicated time period. 

� Temporal continuity: The temporal continuity of a 
cluster is ensured when continuously actual AEs are 
assigned to it, that is the case of moving objects. 

� Stability: a cluster is stable whenever its center is close 
to the barycenter of the assigned AEs. This is the case 
of AEs generated from moving persons, but not valid 
in case of e.g. umbrellas such that only events on the 
umbrella contours “boundaries” are generated.  

� Parameters: there are four parameters used for the 
clustering. Two thresholds for the clustering creation 
and noise suppression and two parameters for the 
dilation in x and y axes. The dilation parameters define 
the size of the cluster outside its center. These latter 
have to be chosen with respect to the expected size of 
the observed objects (like person, vehicle…etc) and 
should not be greater than twice the size of the 
smallest object. The cluster creation threshold has to 
be chosen to allow clustering of objects with a low 
AEs density. 

� Parameter sensitivity: The clustering algorithm is not 
sensitive to the two parameters related to the noise 
suppression and the cluster creation. However, the 
dilation parameters have to be adequately chosen with 
regard to the object size, which is also depending of 
the sensor mounting position and the distance between 
the sensor and the objects.  
 

As the events clusters are computed by a single-pass-
method, the processing demands of the algorithm can be 
kept low. There is no reassignment or rearranging of AEs 
or clusters. By that we achieved that the complexity is 
proportional to the number of events n and the number of 
existing clusters k, “O(n*k)”. Therefore, this method 
ensures fast calculation and assignment of events to 
clusters and to be suitable for large data sets and 
embedded systems. We could prove that this clustering 
approach is able to run in real time. In a live 
demonstration we achieved a performance of clustering of 
about 100kAE/s using the DVS device. While running on 
a PC the  algorithm can handle much more AEs. 

 



 

4. Experimental Results 
We conducted a number of experiments with synthetic 

stimulus and with real-world data for the evaluation of the 
event-based spatio-temporal clustering method.  

Figure 7 shows a test pattern consisting of a rotating 
disc with two black 2D discs, rotating at 1rps for the 
synthetic stimulus (top) and the corresponding generated 
AEs, colored according to ground truth (with two clusters, 
outer and inner ring, and noise), shown in x-y plot 
(bottom). The result of our clustering method using this 
input is shown in an x-y-t plot in figure 8. The AEs 
generated from the two black circles on a rotating disc 
were correctly clustered as separate objects (shown in 
different color) and noise has been successfully identified. 

Real-world test scenarios were collected with a total of 
128 passages (82 riding cyclists; 26 pedestrians, 13 
walking cyclists and 7 pedestrians with umbrellas). Figure 
9 shows generated AEs from two cyclists crossing the 
sensor field of view. The image from a conventional 
camera is shown in the top where the bottom image 
depicts the generated AEs, represented according to their 
x-coordinate (top) and y-coordinate (bottom) in function 
of time. The depth information was mainly used to remove 
outliers and cast shadow of the object. It can be noticed 
that both object has been separated and tracked along their 
passage duration, especially on the y-axis. 
Figure 10 illustrates another example of a real-world 
scene with two cyclists and one person crossing the sensor 
field of view. In Figure 11 the corresponding generated 
events and intermediate clustering results (corresponding 
to figure 10, middle) are shown. The outputs are: collected 
raw data accumulated for about 40ms and rendered in an 
image-like representation (top left), the corresponding 

Figure 7: Synthetic stimulus. Test pattern (top) and
generated AEs (bottom). 

Figure 9: Illustration of tracking two riding cyclists during 
their passage across the sensor FOV (x; y; time) 

Figure 8: Clustering result of synthetic input for about 1.2s,
containing 10.000 events. 

 



 

 

density matrix (top right), the calculated track of each 
cluster, derived from continuing observation of the cluster 
center position (bottom left) and residual cluster 
assignment (bottom right). The light colored circles on the 
bottom-right image indicate the clusters size.  

5. Conclusions and Outlook 
This paper presents a real-time spatio-temporal 

clustering method for asynchronously generated object 
events towards stand-alone and compact (biologically-
inspired) event-based 3D vision system. By combining a 
density approach and a distance approach, the clustering 
method was able to assign individual events to the object 
generating it. The results on synthetic stimulus (rotating 
disc) and real-world scenarios (moving person, riding 
cyclists) with more than 100 objects have shown that the 
 
 
 
 
 

 method can be useful for real-time detection of moving 
objects. A validation on a larger data set in challenging 
(crowded) scenarios is the next investigation step.  
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