
 

 

 
Abstract 

 
The paper presents a compact vision system for efficient 

contours extraction in high-speed applications. By 
exploiting the ultra high temporal resolution and the 
sparse representation of the sensor’s data in reacting to 
scene dynamics, the system fosters efficient embedded 
computer vision for ultra high-speed applications. The 
results reported in this paper show the sensor output 
quality for a wide range of object velocity (5—40 m/s), 
and demonstrate the object data volume independence 
from the velocity as well as the steadiness of the object 
quality. The influence of object velocity on high-
performance embedded computer vision is also discussed. 
 

1. Introduction 
The Address-Events Representation (AER) [5] is the 

data space applied to the neuromorphic temporal contrast 
vision sensors referenced in [8][14]. These sensors have 
the property to only transmit the illumination changes in 
the visual scene such that activities are well captured in 
form of object edges. In contrast to traditional images 
collected by the frame-based sensors, the Address-Events 
(AE) are asynchronously generated and consequently, 
they are not equidistantly sampled neither in space nor in 
time. AE correspond to scene dynamics and thus, they 
allow sparse representation of scene activities with a 
drastically reduced data volume compared to frame-based 
sensors. 

This paper is concerned with the exploitation of the 
neuromorphic temporal contrast vision sensors for 
embedded computer vision in two aspects. The first aspect 
relates to the reduced data volume from scene activities 
monitoring due to the efficient representation of activities 
using on-chip pre-processing. Indeed, almost all computer 
vision tasks rely on efficient discontinuities (edges) 
representation as they consist of relevant scene 
information. Huge effort has to be invested to accurately 
extract this information such that important and costly 

processing resources have to be reserved for this task. 
Therefore, embedded computing has to face with this 
limitation for clock-based sensors, while the 
neuromorphic temporal contrast vision sensors support the 
discontinuities (edges) detection by means of the on-chip 
pre-processing. 

The second benefit, from using the neuromorphic 
temporal contrast vision sensors, stands for the high 
temporal resolution. The temporal accuracy of the scene 
activities follows the object velocity and does not depend 
on a frame rate as in the case of clock-based sensors. AE 
are autonomously generated by the neuromorphic pixels 
upon illumination change, with ultra-high temporal 
precision, that is compatible with the change of the 
velocity. Furthermore, this paper shows the object 
steadiness in edge representation and consequent volume 
of AE along a wide range of object velocities, which make 
the sensor attractive for embedded computer vision. A 
neuromorphic-based sensor system equipped with a dual-
line temporal contrast vision sensor [14] and the Blackfin 
BF-537 processor from Analog Device is used to evaluate 
the benefit of the neuromorphic technology for embedded 
computer vision. 

The paper is structured as follows. In Section 2, a brief 
review of neuromorphic sensors and their characteristics is 
provided. Section 3 presents AER representation of the 
dual-line temporal contrast vision sensor for an object 
with velocities ranging from 5 – 40 m/s. An analysis of 
the advantages of the embedded computer vision using the 
dual-line sensor is given in Section 4. Section 5 discusses 
the advantages and challenges of an embedded computer 
vision system based on the dual-line temporal contrast 
sensor and potential improvements. A summary is given 
in Section 6. 

 

2. Review of the Neuromorphic Sensors 
To make this paper self-contained, a short overview of 

the neuromorphic technology is provided. Afterwards, the 
dual-line sensor characteristics, relevant to understand the 
experimental results, are summarized. 

 
Embedded Contours Extraction for High-Speed Scene Dynamics Based on a 

Neuromorphic Temporal Contrast Vision Sensor 
 

A. N. Belbachir, Member, IEEE, M. Hofstätter, N. Milosevic and P. Schön 
smart systems Division 

Austrian Research Centers GmbH - ARC 
Tech Gate Vienna, Donau-City-Straße 1, 1220 Vienna, Austria  

{ahmed.belbachir, michael.hofstaetter, nenad.milosevic, peter.schoen}@arcs.ac.at 
 



 

 

2.1. Neuromorphic Sensors 
 
In the late 1980’s Carver Mead [12] introduced the 

neuromorphic concept to describe VLSI systems 
containing analogue and asynchronous digital electronic 
circuits that mimic neural architectures present in 
biological nervous systems. This concept revolutionized 
the frontier of computing and neurobiology to such an 
extent that a new engineering discipline emerged, with the 
aim to design and build artificial neural systems, such as 
vision systems, auditory processors or autonomous, roving 
robots. The field is referred to as “neuromorphic 
engineering”. The term neuromorphic has also been 
coined by Carver Mead in an attempt to name artificial 
systems that adopt the form of, or morph, neural systems.  

In a groundbreaking invited paper about neuromorphic 
electronic systems [13], published 1990, Mead argues that 
the advantages of biological information-processing can 
be principally attributed to the use of elementary physical 
phenomena as computational primitives, and to the 
information representation by the relative values of analog 
signals, rather than by the absolute values of digital 
signals. He further argues that this approach requires 
adaptive techniques to correct for differences of nominally 
identical components, and that this adaptive capability 
naturally leads to systems that learn about their 
environment.  

Vision models have been built in sensors like the one of 
Mahowald and Mead [10] [11], originally named the 
“silicon-retina” sensor. In succession, a large variety of 
diverse silicon-retina sensor designs have been carried out 
and reported, including gradient based sensors sensitive to 
static edges [6], temporal contrast vision sensors that are 
sensitive to relative light intensity changes [8], orientation 
selective spiking neurons devices [9] from Tobi Delbrück 
and its group in ETH Zürich and optical flow sensors [4] 
from Bernabe Linares-Barranco. 

Silicon-retina sensors feature massively parallel pre-
processing of the visual information in on-chip analogue 
circuits and are commonly characterized by high temporal 
resolution, wide dynamic range and low power 
consumption. Typically these sensors exploit a very 
efficient asynchronous, event-based encoding of the visual 
information that drastically reduces the data redundancy 
and optimizes the use of the transmission channel 
bandwidth which is called “Address-Event-
Representation” (AER). The address-event 
communication channel itself is a model of the 
transmission of neural information in biological systems. 

 
 
 
 

2.2. Dual-Line Sensor Characteristics 
 
The dual-line sensor system comprises two boards, a 

sensor board and a DSP board. A sensor chip is located on 
the sensor board and a data processing unit, based on a 
Blackfin BF537 from Analog Device, is the core part of 
the DSP board. The processing unit contains embedded 
software for real-time analysis and interpretation of the 
sensor data. 

The vision sensor chip [14] contains a dual-line 
arrangement of 2×256 temporal contrast pixels. The on-
chip distance between the two lines is 250μm. This 
distance and the event generation time are used for the 
velocity estimation of objects crossing both lines. The 
chip includes a built-in synchronous arbiter, which is 
responsible for structuring the transfer of the events 
generated from the pixels to the data buffer. An on-chip 
electronic [7] assigns timestamps to the events during their 
generation on-chip at the pixel level with a minimal time 
resolution of 100ns. The output data stream of the sensor 
consists of 16-bit words of address events (AE), which 
contains the location (address) of the event generating 
pixel within the dual-lines, and the timestamps (TS) to 
represent the event occurrence time. The timestamp value 
is transmitted once for corresponding address events 
occurring within the timestamp interval (down to 100 ns). 
TS data and AE are always transferred together such that 
the timestamps are only annexed when AE are generated. 
If no AE are generated, no AE data are put out. The 
timestamp counter wrap-around is signaled in any case. 
This enables the processor to perform a timestamp value 
expansion to keep the absolute time differences. Figure 1 
depicts an output data sequence example. 
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Figure 1: Sequence protocol of TAE data types 



 

 

AE are subdivided in ON-event to illustrate the 
intensity increase and OFF- event to show the intensity 
decrease. To distinguish between TS, ON-event, OFF-
event, a dedicated bit coding is used [7]. The sensor board 
also includes auxiliary electronics for the on-the-fly 
configuration of the sensor chip. This allows adapting the 
sensor to different scene conditions like varying 
illumination, object reflectance and speed. 

The timestamps (event occurrence time) and the 
corresponding AE are transmitted to a FIFO on a 16-bit 
parallel bus. The FIFO is placed between the sensor and 
the DSP to cope with peaks of AE activity and is capable 
of handling up to 40 MHz memory access frequency. 

An embedded computing unit based on the Blackfin 
BF-537 allows real-time interpretation and embedded 
computer vision. It is annexed to the FIFO via the parallel 
port. Hereby, new data are signaled to the computing unit 
by using an external interrupt request input. The interrupt 
service routine handles the date transfer from the parallel 
port to the data buffer which is located in the external 
memory. This data buffer is the base for the algorithmic 
processing. The computing unit has a maximum frequency 
of 600 MHz, 128 KB internal memory and 32 MB 
external SDRAM memory. This memory resource limits 
the processing capabilities of any high-resolution video 
system and may not feed the video processing needs.  

3. Address-Events Representation with a 
Dual-Line Sensor 

This Section presents the AE raw data resulting from an 
object moving at selected velocities from 5 to 40 m/s. 
Next, the resulting object’s data volume has been 
evaluated for the different velocities. Finally, a 
comparison of the data rate between this neuromorphic 
sensor and clock-based line sensor is provided. 

3.1. Address-Event Representation 
The 2-D object representation with the dual-line sensor 

consists of the pixel index (y-axis) versus the time (x-
axis). The x-axis represents the event generation time in 
units of the timestamp period, the y-axis is the pixel 
address (0-255). For this test, a 2-D object has been fixed 
on a rotating drum with tunable velocity from 1 to 40 m/s, 
and the corresponding AE data have been generated at 
selected velocities (5 – 40 m/s). 

Figure 3 depicts an original object (a) and its 
corresponding AE on one sensor line for the object 
crossing the sensor field of view at several velocities ((b): 
5 m/s, (c): 15 m/s, (d): 20 m/s, (e): 30 m/s and (f) 40 m/s) 
at a distance of about 18 cm. The magnification factor of 
the used lens has been estimated to about 5.7. The black 
dots represent the OFF-events while the white dots show 
the ON-events. The background (grey) does not 

correspond to any data. The timestamp period was 
configured to 5μs for all velocities. 

The time has been scaled to retrieve the original 2-D 
object shape. The scale factor is the object velocity v as 
the distance x is calculated as follows:  

 
                                            x = v⋅ t  (1) 

 
where t is the event generation time. By using the prior 

knowledge about the distance between the sensor lines 
(250µm) and by correlating the data from both lines, the 
object velocity can be estimated to build the 2-D object 
form. The velocity estimation using the dual-line sensor 
has been performed with 1% accuracy as in [3]. 

Figure 3 (b)-(f) shows the object quality steadiness at 
different velocities. Figure 3(b) depicts the double edging 
effect mainly related to the common configuration of the 
refractory period, which is a tunable parameter to control 
the maximal event generation rate on pixel level, for all 
tests and velocities 

3.2. Resulting Object’s Data Volume at Different 
Velocities 

The corresponding data volume per object has been 
evaluated and the results are shown in Figure 2. The x-
axis shows the object velocity and the y-axis depicts the 
respectively generated number of AE per object. The same 
sensor configuration has been used for all tests. Objects 
with slow velocities show several spikes (AE) for coding 
one edge, due to the unified configured refractory period 
for all velocities. Figure 3(a) shows the effect of double 

spiking at object speed of 5 m/s. Therefore, Figure 2 
shows higher data volume for the same object at low 
velocities than at high velocities. 

Figure 2: Number of Address-Events generated by the dual-
line sensor for one object taken at different velocities 



 

 

 

 

 

 

Figure 3: Original object (a) and its representation in AER space at velocities 5m/s (b), 15m/s (c), 20 m/s (d) 30m/s (e) and 
40 m/s (f) using one sensor line of the neuromorphic temporal contrast dual-line vision sensor 

(a) (b) 

(d) 

(e) (f) 

(c) 



 

 

3.3. Data Rates 
Table 1 shows an example of the resulting data rates for 

objects crossing the sensor field of view at different 
speeds. For object length of 2.5 cm and distance between 
objects of about 7.5 cm, the dual-line temporal contrast 
vision sensor can scan 10 objects per meter. The 
corresponding number of objects/s for different velocities 
with the corresponding data rate is reported in Table1. 
One sensor line produces 2.6 Mbit/s for 50 objects per 
second and 10.3 Mbit/s for 400 objects per second. 

 
 
Speed[m/s] Number of 

objects/s 
Data rate 
[Mbit/s] 

5 50 2.6 
10 100 3.2 
15 150 4.7 
20 200 5.5 
25 250 6.7 
30 300 7.9 
40 400 10.3 

Table 1: Representative data rates from one sensor line of the 
neuromorphic dual-line sensor for object length of 2.5 cm 
moving at different velocities and at with a repetition distance of 
7.5 cm 

 
The comparison with standard clock-based line sensor 

is not trivial because of the difference in the 
characteristics. The 5µs timestamp are comparable to a 
200 kHz line rate however the AER with OFF and ON 
events cannot be compared to 1-bit resolution because the 
temporal contrast vision sensor is sensitive to illumination 
changes and thus supports a high range of grey values, 
without taking the absolute grey value into account. 
Indeed, AER consists of relative values for illumination 
change. For a fair comparison, an existing ultra high-
speed clock-based line scanner in the market, running at 
100 kHz line rate and having 8-bit pixel resolution, has 
been chosen. The data rates resulting from the comparison 
are presented in Table 1. The data rate Dc for the clock-
based line scanner is calculated as follows: 

 
Dc = 100000 ⋅ 8 ⋅ 256 = 195 Mbit/s  (2) 
 

This comparison is illustrated in Figure 4. The x-axis 
represents the object velocity while the y-axis shows the 
resulting data rate in a logarithmic scale for the clock-
based line scanner (dashed line) and one sensor line of the 
dual-line sensor (solid line with diamonds). It can be 
noticed the drastic reduction of the data volume and the 
efficient exploitation of the bandwidth using the 
neuromorphic dual-line sensor. The data volume almost 
increases linearly with the number of objects/s. 

4. Embedded Object’s Contours Extraction 
This Section presents the initial steps for embedded 

computer vision, which include the data acquisition, 
object detection and preparation for interpretation. The 
computational effort for this step and the available results 
for further processing are assessed for the Blackfin BF-
537 from Analog Device. 

 

4.1. Object Detection 
Clock-based sensors require additional systems to 

detect objects within the data stream. These systems can 
be mechanical (external trigger) or algorithmic, such that a 
software module has to be included for extracting the 
objects out of the data stream. The neuromorphic temporal 
contrast vision sensor has the advantage to implicitly 
detect the object as the data rate will drastically increase 
whenever this object crosses the sensor’s field of view. 
The object motion causes illumination changes that 
implicitly trigger the generation of a bulk of AE. 
Therefore, the individual objects are detected in the data 
stream by monitoring the data rate in time slots under the 
assumption that the objects are sequentially crossing the 
sensor field of view. An object is detected when the event 
rate exceeds a first threshold (threshold 1 is set typically 
to 5 events per time slot). 

When the event rate falls below second threshold 
(threshold 2 < threshold 1), the detection algorithm 
assumes the end of the object. The event rate is calculated 
for time slots of 1 ms. The identified cluster of events is 
collected and associated to one object. Figure 5 depicts 3 

Figure 4: Comparison between a 256-pixel line neuromorphic 
sensor and a clock-based line sensor in terms of data rate vs. 
object velocity (b). 



 

 

(a) 

(b) 

Figure 5: Detection of three objects (a) crossing sensor field of 
view at a velocity of 5 m/s using averaged AE rate 

objects crossing the neuromorphic sensor field of view at 
5 m/s (a) and their corresponding averaged events rate (b). 

The averaging has been performed to reduce the effect 
of the salt-and-pepper noise (white dots) originating from 
the internal sensor noise as well as from fluctuations in the 
scene. The three clusters of events allow the detection of 
the objects and their localization in time (relative 
occurrence time in the x-axis). 

4.2. Contours Extraction 
For the extraction of the object contours, two 

processing steps are carried out: the edge thinning and 
outliers removal. The edge thinning is performed by 
emulating an additional event type (ON or OFF) 
dependent refractory period in the processing while 

outliers removal aims to suppress the isolated AE (salt and 
pepper noise). 

The refractory period is the sensor parameter that 
affects the AE volume and depends on the object velocity. 
This parameter defines the duration in which the pixels are 
not allowed to generate a second event. It is beneficial in 
avoiding several spiking (AE) on the same intensity 
change information and thus avoiding double edges. For 
the same refractory period, several edges can be produced 
for slow objects while fast moving objects may generate 
individual edges due to the spike-rate coding of contrast 
edges. 

To keep the system configuration independent from the 
object velocity, a short refractory period has been used 
while an edge thinning module is included in the 
embedded processing to unify the object contours 
representation independently from its speed. This module 
is intended for extracting the object edges by removing 

(a) 

Figure 6: Edge thinning results 

(b) 



 

 

redundant events. Each pixel can deliver one to several 
events per time slot and contrast change. 

This algorithm reduces the data to one event per pixel 
and slot duration, thus only the first pixel event is kept per 
slot. The time slot is adjusted for compatible object 
contours in the velocity range of 1 – 40 m/s. 

Figure 6(b) shows the edge thinning results for the 
object moving at 5 m/s (Figure 6(a)). It can be noticed that 
the first event per pixel has been kept while the next 
redundant spikes within a time slot have been removed. 
The resulting object is comparable to those in Figure 3 
((c) – (f)) 

The second step consists of removing the isolated AE, 
corresponding to salt and pepper noise. By building a 
histogram of the occurrence times of AE, many outliers 
can be detected. Figure 7(a) depicts this histogram for AE 

shown in Figure 6(b). We can see a bulk of AE between 
242 and 250 ms and few isolated AE for time >250ms. 
These Individual AE are detected and removed by setting 
an appropriate threshold (if the number per timestamp = 1 
then the corresponding AE will be removed). The result of 
the outlier removal is shown in Figure 7(b). We can notice 
the drastically reduced number of outliers compared to 
Figure 6(a) while preserving the main object contours. 

4.3. Embedded Computing Performance 
In order to evaluate the embedded computer vision and 

scene interpretation performance using the neuromorphic 
dual-line temporal contrast vision sensor, a quantitative 
estimation of the used resources in term of memory and 
processing effort for data acquisition, object detection and 
contours extraction. Table 2 provides this quantitative 
evaluation for the Blackfin BF-537 processor from 
Analog devices with 32 MB RAM and 600 MHz. 
 

Speed 
[m/s] 

Number 
of 

objects/s 

Memory 
Usage /s        

[% from 32 
Mbytes] 

CPU 
Workload   

[% from 600 
MHz] 

5 50 1 5 
10 100 1.3 8 
15 150 1.9 11 
20 200 2.2 16 
25 250 2.7 27 
30 300 3.1 34 
40 400 4.1 58 

 
Table 2. Quantitative evaluation of the relative resources 

usage using the dual-line sensor and the Blackfin BF-537 from 
Analog Device with 600 MHz and 32 MB memory 
 

The memory usage is less than 4.1% of the total 
memory for up to 400 object/s (with velocities up to 40 
m/s) such that the object has 25 mm length. A Clock-
based line sensor with 256 pixels with 8 bit output and 
running at 100 kHz line rate would provide a permanent 
data volume of 24.4 MByte/s, that is 76% of the Blackfin 
overall memory. This memory usage is permanent and 
independent from the object speed and the number of 
objects per second. Therefore, the neuromorphic allows a 
reduction of the used memory space for embedded 
processing and storage by more than 20 times. 

Furthermore, processing workload has been estimated 
to 58 % for 400 objects crossing the sensor field of view 
at a velocity of 40 m/s. This workload includes the data 
acquisition, the object detection and the contours 
extraction. The clock-based line sensor may saturate the 
processing at velocity ≥ 10 m/s because the object 
detection is not implicitly fostered by the sensor and 

(a)

Figure 7: Outliers removal results 

(b)



 

 

therefore, the corresponding algorithms have to be 
implemented in the embedded computing unit, which 
become computationally prohibitive at higher object 
velocities. 

5. Discussions 
The neuromorphic temporal contrast vision sensors are 

very attractive for efficient embedded computer vision 
especially for high-speed applications. They have the 
advantage to provide drastic reduction of the data volume 
such that further data interpretation can be achieved on 
low-cost embedded computing unit. Furthermore, the 
sensor provides high temporal resolution as the time 
information does not depend on a frame rate but on the 
scene dynamics and the object velocity. Moreover, the 
sensor is not sensitive to illumination conditions as it 
reacts to relative illumination changes. As a consequence 
object detection is implicitly supported by the sensor. 

The typical sensor output data are the object edges. 
However, further embedded processing can be performed 
for contours extraction as the data may be contaminated 
by sensor internal noise (salt-and-pepper noise) or 
duplicated edges. 

Another side effect of the sensor consists of non-
sensitivity to object edges, which are parallel to the 
motion direction. These edges may not generate AE as 
they will not involve illumination change. An additional 
processing step can be included for the reconstruction of 
these edges. 

6. Summary and Conclusions 
In this paper, an embedded computer vision system for 

contours extraction of high-speed dynamics based on a 
neuromorphic temporal contrast vision dual-line sensor 
has been presented. By exploiting the sparse 
representation of the scene dynamics and by offering an 
ultra-high temporal resolution (at least 100ns), this system 
is very beneficial for ultra-high speed applications where 
traditional clock-based sensor systems are 
computationally prohibitive. The system has been 
demonstrated for contours extraction of objects moving at 
velocities up to 40 m/s. The quantitative evaluation has 
shown a reduction of the data rate by a factor of 20 for 
400 objects per second moving at 40 m/s.  

As perspective, advanced embedded computer vision 
dealing with object recognition will be investigated using 
approaches from the computational intelligence like the 
neural networks and support vector machines. 
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