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Abstract 
This paper proposes a real-time implementation of a 

clustering and classification method using asynchronous 
events generated upon scene activities by an event-based 
dynamic stereo vision system. The inherent detection of 
moving objects offered by the dynamic stereo vision 
system comprising a pair of dynamic vision sensors allows 
event-based stereo vision in real-time and a 3D 
representation of moving objects. The clustering and 
classification method exploit the sparse spatio-temporal 
representation of sensor’s events for real-time detection 
and separation between moving objects. The method 
makes use of density and distance metrics for clustering 
asynchronous events generated by scene dynamics 
(changes in the scene). It has been evaluated on clustering 
the events of moving persons across the sensor field of 
view. The method has been implemented on the Blackfin 
BF537 from analog device and tested on real scenarios 
with more than 100 persons. The results show that the 
resulting asynchronous events can be successfully 
clustered in real-time and that the classification rate of 
pedestrians is successful in more than 92% of the cases.  

1. Introduction 
Event-based stereo vision [2] aims to duplicate the human 
vision system in reacting to scene dynamics by generating 
events including the depth information, using a pair of 
vision sensor. An event-based 2D Dynamic Vision Sensor 
(DVS) was introduced in [9] including a set of 
autonomous self-spiking pixels reacting to relative light 
intensity changes. Its advantages include high temporal 
resolution, extremely wide dynamic range and complete 
redundancy suppression due to included on-chip 
preprocessing. It exploits very efficient asynchronous, 
event-driven information encoding, Address-Event 
Representation (AER) [4], for capturing scene dynamics 
(e.g. moving objects). 
A preliminary result on the realization of event-based 3D 
vision in a stereo sensor, with a pair of DVSs and a stereo 
matching algorithm for calculating depth information, is 
reported in [2]. Such a system exploits the on-chip pre-

processing offered by the DVS for efficient and real-time 
3D vision and object classification with regards to two 
aspects: Firstly, the data volume is reduced as compared to 
conventional image frame-based stereo systems due to the 
efficient representation of scene dynamics using on-chip 
pre-processing of the visual information. Indeed, real-time 
stereo vision is computationally demanding, implying the 
allocation of large and costly processing and memory 
resources. The dynamic vision sensors inherently support 
on-chip edge detection with a low data volume by means 
of massively parallel focal plane processing, to allow real-
time 3D representation. Secondly, the sensor sensitivity to 
the relative light-intensity changes allows robustness 
against illumination conditions. Furthermore, since it is 
not necessary to integrate light as in frame-based sensors, 
the sensor is also highly sensitive to scene dynamics in 
weak illuminations with high temporal response. 
Spatio-temporal data processing has been introduced by 
Fahle [5] and Adelson [1] in the early 80’s. However, 
methodologies for representing low-level spatio-temporal 
cues and high-level models suitable to explain spatio-
temporal evidence are still scarce. The main reasons why 
joint spatio-temporal processing has not been addressed in 
detail originates from different factors: (i) digital 
computers operate using “atomistic” principles, where 
operations are broken down into sequence of steps and 
processing is performed independently for each step on 
discrete data; (ii) common vision sensors provide temporal 
data sequences in form of distinct images (frames) and 
(iii) the computational burden imposed by the large 
amount of data in the space-time volume has been a 
limitation for efficient operation. 
The space-time processing approach is an appropriate 
strategy for the robust analysis of visual data 
encompassing dynamic processes such as motion, variable 
shape, and appearance, whereas traditional frame-based 
approaches require additional modeling tools (e.g. Markov 
chains) for dynamical processes. In the development of 
methodologies for the space-time domain over the last two 
decades, the research focus has mostly remained on the 
development of low-level cues, which have incrementally 

 



 

become more descriptive (e. g. transition from simple 
motion cues to space-time shape). 
Those efforts have been invested for automated extraction 
of relevant information (in space and in time) from image 
sequences using frame-based image sensors. Mainly due 
to the temporally (rate) and spatially (frame) discrete 
nature of digital image sequences provided by these 
standard sensing devices, a constant data volume is 
continuously produced. Such frame-based sensors are not 
well suited for space-time processing as (i) the data 
contain substantial temporally redundant information 
within each frame, and (ii) temporally discrete with coarse 
resolution (typically 25 frames per second), and (iii) 
increasing the temporal resolution (thus the amount of 
visual data) leads to prohibitive computational 
complexity. 

A spatio-temporal clustering method for 
asynchronously generated events has been presented in 
[11]. This paper presents the real-time evaluation of the 
clustering method in [11] for the DVS’ events, represented 
in a spatio-temporal domain and its implementation on the 
Blackfin BF 537 from Analog Device for real-time object 
classification in real surveillance scenarios towards a 
compact remote stand-alone 3D vision system. The system 
consists of a stereo sensor and a processing unit including 
event-based clustering and classification algorithms. The 
paper is structured as follows: Section 2 provides a brief 
review of the architecture of the event-based 3D vision 
system including core algorithms. The clustering and 
classification method using the sensor data is presented in 
Section 3. Section 4 describes evaluation results on real-
world recordings of surveillance scenarios.  A summary is 
provided in Section 5 to conclude the paper. 

Figure 1: Hardware architecture and signal flow of the Stereo DVS

2. Dynamic Stereo Vision Sensor 
The architecture of the dynamic stereo vision system 

[12] is depicted in Figure 1 including two DVSs as 
sensing elements [9], a buffer unit consisting of a 
multiplexer (MUX) and First-In First-Out (FIFO) 
memory, and a Blackfin BF537 digital signal processor 
(DSP) from Analog Device as processing unit.  

The DVS consists of an array of 128x128 pixels, built 
in a standard 0.35μm CMOS-technology. The array 
elements (pixels) respond to relative light intensity 
changes by instantaneously sending their address, i.e. their 
position in the pixel matrix, asynchronously over a shared 
15 bit bus to a receiver using a “request-acknowledge” 2-
phase handshake. 

Such address-events (AEs) generated by the sensors 
arrive first at the multiplexer unit. Subsequently, they are 
forwarded to the DSP over a FIFO. The DSP attaches to 
each AE a timestamp at a resolution of 1ms. The 
combined data (AEs and timestamps) are used as input 
stream for 3D map generation and subsequent processing. 

Figure 2 shows the realized stereo vision system where 
the vision chips are on the front face (left image) and the 
BF537 core module is on the back face (right image). 
Other modules for the sensor control and data interface 
can also be seen on both sides.  

Figure 2: Image of the realized event-based stereo vision 
system: front face (left) and back face (right) 

 



 

Figure 3 depicts a space-time representation of one 
DVS’ data, resulting from a two persons crossing the 
sensor field of view. The events are represented in a 3 D 
volume with the coordinates x (1:128), y (1:128) and t 
(last elapsed ms), the so-called space-time representation. 
The bold colored dots represents the events generated in 
the recent 10 ms. The blue and red dots represent spike 
activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from the 
person motions, respectively. The small gray dots are the 
events generated in the elapsed 1.9 seconds prior to the 
recent 10ms. The four dashed lines are added in the figure 
to highlight the event path in the past 1.9 sec for the 
moving persons, which is an ideal basis for clustering and 
tracking in space and time. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Event representation of scene dynamics (2 persons crossing the 

field of view) in a space-time domain using 1 DVS 
Figure 4 shows an example of a visual scene imaged by 

a conventional video camera and its corresponding AEs 
using one DVS rendered in an image-like representation. 
The white and black pixels represent spike activity 
generated by a sensed light-intensity increase (ON-event) 
and decrease (OFF-event) resulting from two cyclists 
motions, respectively. The gray background represents 
regions with no activity in the scene. The non-moving 
parts in the scene do not generate any data.  The 
processing unit (DSP) embeds event-based stereo vision 
algorithms, including the depth generation or the so-called 
sparse depth map. The resulting sparse color-coded depth 
map of the scene is depicted in Figure 4 (left). The 
algorithm for real-time depth estimation has been 
described in [2][12] in detail. 

3.   Real-time Clustering and Classification 
The 3D DVS continuously and asynchronously generates 
events as reaction to moving objects crossing the sensor 
field of view. The objective of this clustering method is to 
group together (asynchronous) events belonging to the 
same moving object e.g. the same person. The objective of 
classification is to recognize the clustered objects’ events 
and separate them into pedestrians and cyclists. Figure 5 
provides an overview of the processing steps which are 
described in the following. 

3.1. Real-time Clustering 
The used clustering method is described in [11] in detail. 
It combines density-based [9] and distance based 
clustering for robustness. Similarity between AEs is given 
by a distance function f(Cluster,AE) calculating the 
distance of the AE to the cluster center and expressed in 
the assignment of the AEs to the same cluster. The 
distance used is the sum of Manhattan distance in space-
time (x,y,t) between the pixel coordinates of the AE and 
the cluster center is used. The cluster center is defined as 
the moving average of (x,y) coordinates of the assigned 
AE’s. The clustering input data is a stream consisting of 
the temporal sequence of AEs having (x,y) coordinates, 
their polarity p (OFF or ON), the timestamp t and the 
reconstructed depth z. The data stream is neither stored for 
interactive processing nor grouped in frames. For each 
AE, a cluster assignment will be evaluated; afterwards, the 
AE will be discarded.  
 
Assignment: AEs, with local density above a dedicated 
threshold, imply the calculation of their radial distance to 
every cluster. The strength (influence) of the AE on each 
cluster is evaluated. The AE is assigned to the cluster most 
influencing. The evaluation function depends on the AE 
distance, the radial dilation of the cluster, and the weight 
of the cluster. This latter is calculated from the sum of all 
assigned AES (number of AEs in a cluster). AEs with 

Figure 4: Still image of a person from a conventional video 
camera (top right); the corresponding AE from one dynamic 

vision sensors (bottom right); resulting “sparse” event depth map 
color coded (left) 

 



 

Figure 5: Classification steps 

density lower than a threshold are considered as outliers 
and are suppressed. An AE is not assigned to a cluster, 
when the radial distance to cluster is greater than the 
maximum object dilation. A new cluster can be created 
when AEs do not fit exiting clusters and the local density 
of these AEs exceeds a dedicated threshold.  
 
Cluster properties: the properties of cluster comprise the 
radial dilation, the cluster weight, the coordinates-related 
dilation, cluster center, cluster size and passage duration. 
These properties are updated for each assigned AE. 
The individual steps of the clustering method (cluster 
creation and AE assignment) are further detailed as 
follows:  
 
� Cluster: the cluster represents a bulk of frequent AEs, 

which have density-based interrelationship around a 
center. If the density has its maximum at the object 
center then the object reaches a high stability. 
 
� Interrelationship between AEs:  it depends on the 

cluster strength within the AEs locations. The 
interrelationship is not explicitly calculated but derived 
from the assignment to a common cluster. 
 
� Creation of new clusters: a cluster is created when the 

generated AE cannot be assigned to an existing cluster 
because it lies outside the maximal size of all existing 
clusters and when a local density resulting from 
generated events exceeds a threshold.  
 
� Termination of a cluster: A cluster can be removed 

whenever it is not timely actual and no new AEs are 
assigned to it for a dedicated time period. 
 
� Temporal continuity: the continuity of a cluster is 

ensured when continuously actual AEs are assigned to it 
that is the case of moving objects. 

 
� Stability: a cluster is stable whenever the maximum 

density of the assigned AEs lies at the center of the 
object. This is the case of AEs generated from moving 
pedestrians and cyclists, but not valid in case of 
umbrellas (in our application case). 
 
� Parameters: there are four parameters used for the 

clustering. Two thresholds for the clustering creation 
and noise suppression and two parameters for the 
dilation in x and y axes. The dilation parameters define 
the size of the cluster outside its center. These latter 
have to be chosen with respect to the expected size of 
the observed objects (like pedestrian and cyclists in our 
case) and should not be greater than twice the size of the 
smallest object. The cluster creation threshold has to be 
chosen to allow clustering of objects with a low AEs 
density. 
 
� Parameter sensitivity: The clustering algorithm is not 

sensitive to the two parameters related to the noise 
suppression and the cluster creation. However, the 
dilation parameters have to be adequately chosen with 
regard to the object size, which is also depend from the 
sensor mounting position and the distance between the 
sensor and the objects. Objects with small density may 
not trigger creation of clusters. 

 
The AE clusters are computed in a single pass, meaning 
that AE are clustered in one step such that individual AE 
are directly assigned to a cluster. There is no reassignment 
or rearranging of AE or clusters. This clustering approach 
runs in real time and the complexity is proportional to the 
number of events “O(n)”, such that each event is 
processed only once. Furthermore, this method ensures 
fast calculation and assignment of events to clusters to be 
suitable for large data sets and for embedded systems.  

 



 

3.2. Feature Extraction & Classification 
After having built clusters from events through moving 
objects, descriptive cluster features are used to separate 
between pedestrians and cyclists with the help of a 
decision tree. A set of values for pedestrian, cyclists has 
been defined as a basis for classification. 
 We have investigated parameters like object dimensions 
(length, width, and height), temporal information 
(velocity, passage duration) and density (number of events 
per object). In a first attempt, we use three features 
(length, width and passage duration) for the classification 
as illustrated in Figure 6. The object height and density 
did not improve the classification robustness. Further 
investigations are still needed. 
 
For the decision tree, thresholds on length, width and 
passage duration are set in order to distinguish between 
the multiple objects, leading to the classification results 
shown in the next section. 

4. Experimental Analysis 
In order to evaluate the embedded computer vision and 

scene interpretation performance using the event-based 
stereo vision system, a quantitative estimation of the 
generated AEs from the system for different objects size 
has been made as well as their related processing effort on 
the Blackfin BF-537 processor from Analog devices with 
32 MB RAM and 600 MHz. 

We have collected real-world data for the evaluation of 
the event-based 3D system and the classification method. 
Test scenarios have been collected with a total of 128 
passages (82 riding cyclists; 26 pedestrians, 13 walking 
cyclists and 7 pedestrians with umbrellas). Figure 7 shows 
selected test cases from an overhead mounting of the 
dynamic stereo vision sensor. The sensor monitor a road 
with two lanes one for pedestrian and the other for 
cyclists.  
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Figure 6: Graphical illustration of the features used for classification 
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Figure 7: Overview of the test area (top) and selected test scenarios in 
pedestrian surveillance 

 



 

Figure 8: Illustration of resulting data rates for persons crossing the sensor field of view and its dependability on mounting positions & person size 

Figure 8 shows an analysis of peak data rates received 
by the embedded system and its dependability of 
mounting positions and persons width. For a lower 
mounting position, the data rate is high due to the 
increasing size of the person on the sensor field of view. 
Tests showed that the Blackfin BF537 can process up to 
350 kAE/s. 

Figure 9 shows, generated events from two cyclists 
(also in Figure 6 crossing the sensor field of view. The top 
image shows AEs represented according to their x-
coordinate in function of time and the representation in 
function to the y-coordinate is given in the bottom image. 
The z-coordinate computed from the stereo vision is not 
used in this classification. It was mainly used to remove 
outliers and cast shadow of the object. From Figure 9, it 
can be noticed that both object are separated and tracked 
along their passage duration. 

Figure 10 shows classification results of riding cyclists 
and pedestrians for multiple scenarios using three criteria 
(length to width ratio in the x-axis and passage duration in 
the y axis). The separating line represents the thresholds 
used in the decision tree for the classification. The two 
objects classes are almost linearly, separable.  However, 
running persons can coincide with slowly riding cyclists.  

Table 1 and Table 2 present classification results for 
2+1 classes (pedestrian and riding cyclist) and 4+1 
(pedestrian, riding cyclist, walking cyclist and pedestrian 
with umbrella), respectively. In these tables only the true 
positive classification (correctly classified) is represented 
as a first step. Still a full classification evaluation needs to 
be performed. It can be noticed that riding cyclists are best 
distinguishable together with pedestrian and walking 
cyclist while pedestrians with umbrella are not efficiently 
classified. One reason for the bad classification of 

 



 

 

5. Conclusions and Outlook 
This paper presents a stand-alone and compact event-

based 3D vision system including a spatio-temporal 
clustering method for real-time classification of 
pedestrians and cyclists. The preliminary results on real-
scenarios, with the algorithm implemented in the BF537 
Blackfin processor, have shown that the system can 
distinguish in real-time between riding cyclists, 
pedestrians, and walking cyclists in more than 92% of the 
cases using three criteria: length, width and time. Further 
investigations in clustering and criteria selection are 
needed to distinguish pedestrians with an umbrella. This 
evaluation is still preliminary as it was performed with a 
data set of 128 test cases. A validation on a larger 
scenarios set will be performed.  

umbrellas might be the low density of the AEs and the 
difficulty to recognize them as one cluster. The other 
reason is probably the low number of test examples for 
this classification. This object (umbrella) still needs 
further investigation with more test data for robust 
analysis.  

  
Type Nb. 

cases 
Correctly classified 
(true positive only) 

Classification 
rate (%) 

Riding cyclist 82 82 100 
Pedestrian 26 24 92 

 
 

Type Nb. 
cases 

Correctly classified 
(true positive only) 

Classification 
rate (%) 

Riding cyclist 82 79 96 
Pedestrian 26 24 92 
Walking cyclist  13 12 92 
umbrella 7 3 43 
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