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Abstract 
We propose a real-time method for counting 

pedestrians and bicyclists by classifying bulks of 
asynchronous events generated upon scene activities by 
an event-based 3D dynamic vision system. The inherent 
detection of moving objects offered by the 3D dynamic 
vision system comprising a pair of dynamic vision sensors 
allows event-based stereo vision in real-time and a 3D 
representation of moving objects. A clustering method 
exploits the sparse spatio-temporal representation of 
sensor’s events for real-time detection and separation 
between moving objects. The method has been 
demonstrated for clustering the events and classification 
of pedestrian and cyclists moving across the sensor field 
of view based on their dimensions and passage duration. 
Tests on real scenarios with more than 100 cyclists and 
pedestrians yield a classification performance above 92%.  

1. Introduction 
 

Pedestrian and bicyclist counts are a key performance 
measure necessary to evaluate the impacts of 
infrastructure improvement, to develop estimates of 
pedestrian risk and to understand the environmental 
correlates of walking and cycling [7]. Statistics about 
pedestrian and cyclist frequencies allow municipalities to 
monitor urban mobility and trigger planning infrastructure 
design improvements.  
Figure 1 shows an example of a poor design, resulting in 
pedestrians using a narrow ramp [6]. While a number of 
reliable bicycle counting technologies are already 
commercially available, at this time, most of the existing 
automated pedestrian counting technologies are not well-
adapted to counting pedestrians in outdoor urban 
environment. We refer to [7] for an overview of 
commercially available people counting technologies. 
Vision-based systems have seen large progress in recent 
years, even for crowded scenes in oblique camera views 
[2] [3]. The large coverage area and the rich visual input 
of vision systems has the potential to distinguish between 
and counting multiple types of non-rigid objects, enabling 

detection and counting of multiple classes of traffic 
participants with a single counting system. If the vision 
system is based on processing stereo information and 
depth computation, harsh environmental conditions such 
as cast shadows or rain can be better fulfilled than with a 
mere 2D visual processing [8].  
 

 
 

Figure 1: Pedestrians prefer the narrow ramp to the shallow stairs [6]  
 
Event-based stereo vision [1] aims at duplicating the 
human vision system in reacting to scene dynamics by 
generating events including the depth information, using a 
pair of vision sensor. An event-based 2D Dynamic Vision 
Sensor (DVS) was introduced in [9] including a set of 
autonomous self-spiking pixels reacting to relative light 
intensity changes. Its advantages include high temporal 
resolution, extremely wide dynamic range and complete 
redundancy suppression due to included on-chip 
preprocessing. It exploits very efficient asynchronous, 
event-driven information encoding, Address-Event 
Representation (AER) [4], for capturing scene dynamics 
(e.g. moving objects). 
The event-based 3D vision in a stereo sensor has been 
realized with a pair of DVSs and a stereo matching 
algorithm for calculating depth information and is 
reported in [1][12]. Such a system exploits the on-chip 
pre-processing offered by the DVS for efficient and real-

 



 

time 3D vision and object classification with regard to two 
aspects: Firstly, the data volume is reduced as compared to 
conventional image frame-based stereo systems due to the 
efficient representation of scene dynamics using on-chip 
pre-processing of visual information. Indeed, real-time 
stereo vision is computationally demanding, implying the 
allocation of large and costly processing and memory 
resources. The dynamic vision sensors inherently support 
on-chip edge detection with a low data volume by means 
of massively parallel focal plane processing, thus allowing 
real-time 3D representation. Secondly, the sensor 
sensitivity to the relative light-intensity changes allows 
robustness against illumination conditions. Furthermore, 
since it is not necessary to integrate light as in frame-
based sensors, the sensor is also highly sensitive to scene 
dynamics in weak illuminations with high temporal 
response.  

This paper presents the application of the system in 
surveillance scenarios for classifying non-motorized 
traffic (pedestrians, cyclists) in a spatio-temporal domain 
towards a compact remote stand-alone system. The system 
consists of a stereo sensor and a processing unit including 
event-based clustering and classification algorithms. The 
paper is structured as follows: Section Fehler! 
Verweisquelle konnte nicht gefunden werden. provides 
a brief review of the architecture of the event-based 3D 
vision system including the core algorithms. The 
clustering and classification method using the sensor data 
is presented in Section 3. Section 4 describes evaluation 
results on real-world recordings of pedestrians and 
cyclists.  A summary is provided in Section 5 to conclude 
the paper. 

2. Dynamic Stereo Vision Sensor 
The existing dynamic stereo vision sensor [1] [12] is 

reported in this section including data examples generated 
by the system. The system, including the sensor board, 

DVS chip and DSP board, is depicted in Figure 2. It 
includes two DVSs as sensing elements [9], a buffer unit 
consisting of a multiplexer (MUX) and First-In First-Out 
(FIFO) memory, and a digital signal processor (DSP) as 
processing unit. 

The DVS consists of an array of 128x128 pixels, built 
in a standard 0.35μm CMOS-technology. The array 
elements (pixels) respond to relative light intensity 
changes by instantaneously sending their address, i.e. their 
position in the pixel matrix, asynchronously over a shared 
15 bit bus to a receiver using a “request-acknowledge” 2-
phase handshake. 

Such address-events (AEs) generated by the sensors 
arrive first at the multiplexer unit. Subsequently, they are 
forwarded to the DSP over a FIFO. The DSP attaches to 
each AE a timestamp at a resolution of 1ms. The 
combined data (AEs and timestamps) are used as input 
stream for 3D map generation and subsequent processing. 

Figure 3 depicts a space-time representation of one 
DVS’ data, resulting from a one person crossing the 
sensor field of view from far left to near right. The events 
are represented in a 3 D volume with the coordinates x 
(1:128), y (1:128) and t (last elapsed ms), the so-called 
space-time representation. The bold colored dots 
represents the events generated in the recent 10 ms. The 
blue and red dots represent spike activity generated by a 
sensed light-intensity increase (ON-event) and decrease 
(OFF-event) resulting from the person motion, 
respectively. The small gray dots are the events generated 
in the elapsed 2 seconds prior to the recent 10ms. Thes 
generated in the past 1.41 sec represent the path of the 
moving person, which is an ideal basis for clustering and 
tracking in space and time. 

 

 
Figure 3: Event representation of scene dynamics (one person crossing 

the field of view from far left to near right) in a space-time domain using 
one DVS 

Figure 2: Photo of the stereo sensor. In the lower right corner 
the DSP Bf537 and the DVS sensor chip are shown. The DSP is

mounted on the back of the board 

 



 

 
Figure 4 shows an example of a visual scene imaged by 

a conventional video camera (top) and its corresponding 
AEs using a pair of DVSs (middle) represented rendered 
in an image-like representation. The white and black 
pixels represent spike activity generated by a sensed light-
intensity increase (ON-event) and decrease (OFF-event) 
resulting from two cyclists motions, respectively. The 
gray background represents regions with no activity in the 

scene. The non-moving parts in the scene do not generate 
any data.  The processing unit (DSP) embeds event-based 
stereo vision algorithms, including the depth generation or 
the so-called sparse depth map. The resulting sparse 
color-coded depth map of the scene depicted in Figure 
4(top) is provided at the bottom in Figure 4.  The 
algorithm used for real-time depth estimation is described 
in [1][12] in details. 

3. Real-time Clustering and Classification 
 
The 3D DVS continuously and asynchronously generates 
events as reaction to moving objects crossing the sensor 
field of view. The objective of this clustering method is to 
group together (asynchronous) events belonging to the 
same moving object (pedestrians, cyclists). The objective 
of classification is to recognize the clustered objects’ 
events and separate them into pedestrians and cyclists. 
Figure 5 provides an overview of the processing steps 
which are described in the following. 

3.1. Real-time Clustering 
The clustering method is described in detail in [11]. It 
combines density-based [10] and distance based clustering 
for robustness of the clustering. Similarity between AEs is 
given by a distance function f (Cluster,AE) calculating the 
distance of the AE to the cluster center and expressed in 
the assignment of the AEs to the same cluster. The 
distance used is the sum of Manhattan distance in space-
time (x,y,t) between the pixel coordinates of the AE and 
the cluster center, where the cluster center is defined as 
the moving average of (x,y) coordinates of the assigned 
AE’s. The clustering input data is a stream consisting of 
the temporal sequence of AEs asynchronously generated 
and having (x,y) coordinates, their polarity p (OFF or 
ON), the timestamp t, the reconstructed depth z. The data 
stream is neither stored for interactive processing nor 
grouped in frames. For each AE a cluster assignment is 
evaluated; afterwards, the AE is discarded. The polarity 

Figure 5: Classification steps 
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Figure 4: Still image of two cyclists from a conventional video camera 
(top); the corresponding AE a pair of dynamic vision sensors (middle); 

resulting event “sparse” depth map (bottom) 

y 

 



 

information is not used for the clustering. 
The individual steps of the clustering method (cluster 
creation and AE assignment) are further detailed as 
follows:  
 

� Cluster: the cluster represents a bulk of frequent 
AEs, which have density-based interrelationship 
around a center. When the maximum density is at 
the object center, the cluster reaches high. 

 
� Interrelationship between AEs:  it depends on the 

cluster strength within the AEs locations. The 
interrelationship is not explicitly calculated but 
derived from the assignment to a common 
cluster. 

 
� Creation of new clusters: a cluster is created when 

a local density resulting from generated events 
exceeds a threshold and when these AEs cannot 
be assigned to an existing cluster because they lie 
outside the maximal size of the existing clusters.  

 
� Suppression of a cluster: A cluster can be 

removed whenever it is not timely actual and no 
new AEs are assigned to it for a dedicated time 
period. 

 
� Temporal continuity: the continuity of a cluster is 

ensured when continuously actual AEs are 
assigned to it that is the case of moving objects. 

 
� Stability: a cluster is stable whenever the 

maximum density of the assigned AEs lies at the 
center of the object. This is the case of AEs 
generated from moving pedestrians and cyclists, 
but not valid in case of umbrellas (in our 
application case).  
 

� Parameters: there are four parameters used for the 
clustering. Two thresholds for the clustering 
creation and noise suppression and two 
parameters for the dilation in x and y axes. The 
dilation parameters define the size of the cluster 
outside its center. These latter have to be chosen 
with respect to the expected size of the observed 
objects (like pedestrian and cyclists in our case) 
and should not be greater than twice the size of 
the smallest object. The cluster creation threshold 
has to be chosen to allow clustering of objects 
with a low AEs density. 

 
� Parameter sensitivity: The clustering algorithm is 

not sensitive to the two parameters related to the 
noise suppression and the cluster creation. 

However, the dilation parameters have to be 
adequately chosen with regard to the object size, 
which is also depend from the sensor mounting 
position and the distance between the sensor and 
the objects. Objects with small density may not 
trigger creation of clusters. 
 

The AE clusters are computed online, meaning that AE 
are clustered in one step such that individual AE are 
assigned to a cluster at once. There is no reassignment or 
rearranging of AE or clusters. This clustering is approach 
runs in real time and the complexity is proportional to the 
number of events “O(n)”, such that each event is 
processed only once. Furthermore, this method ensures 
fast calculation and assignment of events to clusters to be 
suitable for large data sets and for embedded systems. 

3.2. Real-time Feature Extraction & Classification 
After having built clusters from events through moving 
objects, descriptive cluster features are used to separate 
between pedestrians and cyclists with the help of a 
decision tree. A set of values for pedestrian, cyclists has 
been defined as a basis for classification. 
 We have investigated parameters like object dimensions 
(length, width, and height), temporal information 
(velocity, passage duration) and density (number of events 
per object). In a first attempt, we use three features 
(length, width and passage duration) for the classification 
as illustrated in Figure 6. The object height and density 
did not improve the classification robustness. Further 
investigations are still needed. 
For the decision tree, thresholds on length, width and 
passage duration are set in order to distinguish between 
the multiple objects, leading to the classification results 
shown in the next section. 
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T0: entry time to FOV 
Figure 6: Graphical illustration of the features used for classification 
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4.  Experimental Results 
The event-based stereo vision sensor has been overhead 

mounted over a road with two lanes for pedestrians and 
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cyclists. Images from the test environment and the sensor 
mounting position are shown in Figure 7. The 
classification performance has been therefore, evaluated 
for live scenarios of non-motorized traffic.  

 
We have collected real-world data for the evaluation of 

the event-based 3D system and the classification method. 
Test scenarios have been collected with a total of 128 
passages (82 riding cyclists; 26 pedestrians, 13 walking 
cyclists and 7 pedestrians with umbrellas). Figure 8 shows 
selected test cases.  

Figure 9 shows, generated events from two cyclists 
(also in Figure 4 (bottom left) crossing the sensor field of 
view. The top image shows AEs represented according to 
their x-coordinate in function of time and the 
representation in function to the y-coordinate is given in 
the bottom image. The depth information (z-coordinate) 
computed from the stereo vision is not used in this 
classification. It was mainly used to remove outliers and 
cast shadow of the object. From Figure 9, it can be noticed 
that both object are separated and tracked along their 
passage duration. 

Figure 7: Picture of the test environment (top) and sensor 
mounting position (bottom) 

Figure 8: Selected surveillance test scenarios of non-motorized traffic 

Figure 9: Illustration of tracking two riding cyclists during their 
passage across the sensor FOV (x-coordinate; y-coordinate; time 

 



 

 

5. Conclusions and Outlook 
This paper presents the application of the stand-alone 

event-based 3D vision system for real-time surveillance in 
the classification of non-motorized traffic like pedestrians 
and cyclists. The system includes a spatio-temporal 
clustering method and a decision tree for the real-time 
classification. The preliminary results on real-scenarios 
have shown that the system can distinguish in real-time 
between riding cyclists, pedestrians, and walking cyclists 
in more than 92% of the cases using three criteria: length, 
width and time. Further investigations in clustering and 
criteria selection are needed to distinguish pedestrians 
with an umbrella. This evaluation is still preliminary as it 
was performed for 128 test cases. A validation on a larger 
test set will be performed. This system shows potential for 
non-motorized traffic surveillance applications.  

Figure 8 shows classification results of riding cyclists 
and pedestrians for multiple scenarios using three criteria 
(length to width ratio in the x-axis and passage duration in 
the y axis). The separating line represents the thresholds 
used in the decision tree for the classification. The two 
objects classes are almost linearly, separable.  However, 
running persons can coincide with slowly riding cyclists.  

Table 1 and Table 2 present classification results for 
2+1 classes (pedestrian and riding cyclist) and 4+1 
(pedestrian, riding cyclist, walking cyclist and pedestrian 
with umbrella), respectively. In these tables only the true 
positive classification (correctly classified) is represented 
as a first step. A full evaluation of the classification, 
including false positives, still needs to be performed. It 
can be noticed that riding cyclists are best distinguishable 
together with pedestrian and walking cyclist while 
pedestrians with umbrella are not efficiently classified. 
One reason for the bad classification of umbrellas might 
be the low density of the AEs and the difficulty to 
recognize them as one cluster. The other reason is 
probably the low number of test examples for this 
classification. This object (umbrella) still needs further 
investigation with more test data for robust analysis.   

 

Figure 10: Classification results of riding cyclists and pedestrian 
using the 2D size vs. passage duration 

Separating line 
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