
EMBEDDED VISION SYSTEM FOR REAL-TIME OBJECT  
TRACKING USING AN ASYNCHRONOUS TRANSIENT VISION SENSOR 

 
M. Litzenberger, C. Posch, D. Bauer,  A.N. Belbachir1), Member, IEEE 

P. Schön, B. Kohn, and H. Garn, Senior Member, IEEE 
 

ARC Seibersdorf research GmbH, Tech Gate Vienna, Donau-City-Str.1, A-1220, Austria 
1) Corresponding author: ahmed.belbachir@arcs.ac.at 

 
 

ABSTRACT 
 
This paper presents an embedded vision system for object 
tracking applications based on a 128×128 pixel CMOS 
temporal contrast vision sensor. This imager asynchronously 
responds to relative illumination intensity changes in the 
visual scene, exhibiting a usable dynamic range of 120dB 
and a latency of under 100µs. The information is encoded in 
the form of Address-Event Representation (AER) data. An 
algorithm for object tracking with 1 millisecond timestamp 
resolution of the AER data stream is presented. As a real-
world application example, vehicle tracking for a traffic-
monitoring is demonstrated in real time. The potential of the 
proposed algorithm for people tracking is also shown. Due 
to the efficient data pre-processing in the imager chip focal 
plane, the embedded vision system can be implemented 
using a low-cost, low-power digital signal processor. 
 
Index Terms— embedded vision system, real-time object 
tracking, address-event representation, neuromorphic vision 
sensor. 
 

1. INTRODUCTION 
 
In the past decades, object tracking has significantly evolved 
from an academically pattern recognition problem [1] into 
emerging applications for different purposes [9]. Existing 
object tracking applications include, but not limited to, 
pedestrian and vehicle tracking and surveillance [11], 
bubbles tracking [2] and soccer players tracking [6].  

Vehicle tracking is one of the most spread applications 
due to the increasing number of cars and the increasing 
demand in traffic safety. Most of the existing vehicle-
tracking systems are based on the video cameras. Many 
video tracking systems identify vehicles by virtue of their 
motion.  In cases where objects are moving quickly past the 
sensing camera, the motion segmentation techniques are fast 
and robust. Unfortunately, in cases where the sensing 
camera observes a largely stationary traffic light queue, 
motion estimation based systems mostly fail to follow-up 
the objects.  

Previous research in automotive tracking systems has 
not been completely successful.  In [9], Kalman-Snakes 
technique is used to provide automobile contours after initial 
motion segmentation step. These contours are used for 
tracking purpose. The authors in [3] make use of block 
matching to find optical flow, which is combined with a 
priori knowledge of the road geometry to handle stationary 
vehicles.  In [15], the authors apply a background estimation 
technique to isolate foreground objects “blobs”. Afterwards, 
the principal component analysis is used to classify the 
blobs and estimate their orientation.  

In addition to the limitation of the developed tracking 
methods in terms of performance, video systems usually 
produce a huge amount of data that likely saturate any 
computational unit responsible for data processing. Thus, 
real-time object tracking based on video data processing 
requires large computational effort and is consequently done 
on high-performance computer platforms. As a 
consequence, the design of video-tracking systems with 
embedded real-time applications, where the algorithms are 
implemented in Digital Signal Processor (DSP) is a 
challenging task. 

A further weakness of video detection is the limitation 
of conventional camera systems to operate under wide 
dynamic range lighting, which is typical for outdoor 
applications. Therefore, real-time video-based tracking 
applications are mostly constrained with limited resources at 
the price of the optimal performance.  

There also exist other systems for vehicle tracking using 
the support of satellites for the vehicle follow-up [1]. 
Although those systems might be efficient, they are very 
costly as they are requiring a sensor, a communication link 
and a workstation mounted on each vehicle. 

The aim of this work is to develop a low-cost tracking 
system with real-time capability for embedded applications. 
The tracking system has been developed using the 
asynchronous transient vision sensor [11] and the algorithm 
has been implemented on the Blackfin DSP from Analog 
Device. The system has already been demonstrated its 
performance for vehicle speed estimation and vehicle 
counting in previous papers [13][3]. This work presents an 
extension application of this system to object tracking. 



The paper is structured as follows. In section 2, the 
embedded sensory system including the DSP unit is 
described. The tracking algorithm is described in section 3. 
The experimental results after the application of the 
presented algorithm on the real data are discussed in section 
4. Section 5 concludes the paper with a short summary.  
 

2. THE ASYNCHRONOUS TRANSIENT VISION 
SENSOR 

 
In contrast to traditional CCD or CMOS imagers that 
encode image irradiance and produce constant data volume 
at a fixed frame rate, irrespective of scene activity, the 
asynchronous vision sensor contains an array of 
autonomous, self-signaling pixels which individually 
respond in real-time to relative changes in light intensity by 
placing their address on an asynchronous arbitrated bus. 
Pixels that are not stimulated by a change in illumination are 
not triggered; hence static scenes produce no output. 
Because there is no pixel readout clock, no time 
quantization takes place at this point.  

The sensor operates largely independent of scene 
illumination, directly encodes object reflectance, and greatly 
reduces redundancy while preserving precise timing 
information. Because output bandwidth is automatically 
dedicated to dynamic parts of the scene, a robust detection 
of fast moving vehicles at variable lighting conditions is 
achieved. The scene information is transmitted event-by-
event to a DSP via an asynchronous bus. The pixel location 
in the imager array are encoded in the event data that are 
reflected as i,j coordinates in the resulting image space in 
the form of Address-Events (AE) [12]. An effective way of 
processing AE data takes advantage of the efficient coding 
of the visual information by directly processing the spatial 
and temporal information contained in the data stream. 

The high dynamic range of the photosensitive element 
(>120dB or 6 decades) makes the imager ideal for 
applications with uncontrolled light conditions. 

Fig. 1 depicts the general architecture of the concerned 
embedded sensory system, which comprises an imager, a 
First-In, First-Out (FIFO) buffer memory and the Blackfin 
DSP BF537 from Analog device. It has a maximum 
frequency of 600 MHz, 128 KB internal memory and 32 
MB external SDRAM memory. This limited memory 
resource might be far-too low for the data processing of any 
high-resolution video system as it does not fit the traditional 
video processing needs. The imager and the DSP consume 
in total roughly 2.5 W of electrical power. The location 
(address) of the event generating pixel within the array is 
transmitted to a FIFO on a 16-bit parallel bus, implementing 
a simple 4-phase handshake protocol. The FIFO is placed 
between the imager sensors and the DSP to cope with peaks 
of AE activity and is capable of handling up to 40 MHz 
memory access frequency. In the processing stage, every AE 

received by the DSP is labeled by attaching the processor 
clock ticks with 1ms precision as a timestamp. These data 
are the basis for the vehicle tracking.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematics of the embedded system architecture. 
 
Other AE processing algorithms for the vehicle speed 

estimation have also been implemented on this DSP [13]. 
The full processing comprises the AE acquisition and time 
stamping, clustering and tracking including rough speed 
estimation. The following sections of this paper focus on the 
tracking algorithm.  

The images in Fig. 2 show a comparison of a still video 
picture and 64×64 pixel transient imager [11] AE data of a 
highway traffic scene. In order to visualize the AE data, 
events have been collected for a 20 millisecond interval and 
rendered like a video frame. The different gray shadings 
encode pixel activity per unit time. Note that the white and 
black vehicles both have very similar representation in the 
AE data stream illustrating the sensitivity of the imager even 
to small contrast changes. 

Detailed technical specifications of the embedded traffic 
data system can be found in [16]. 



 

 
 

Fig. 2.  Still image from (a) a conventional video camera (b) 
and representation of the AE data stream from a 64×64 pixel 
transient imager. The axis of the imager coordinate system 
i,j and world coordinate system x,y are displayed in the 
images. 

3. THE PROPOSED TRACKING METHOD 
 
The proposed algorithm is inspired by the mean-shift 
approach [6][7] and implements a continuous clustering of 
AE’s and tracking of clusters. This algorithm processes each 
AE as it is received without data buffering (no memory 
consumption). This is of special importance when using 
low-cost and low memory resource systems.  
Each new event can be assigned to a cluster based on a 
distance criterion and is used to update this clusters weight 
and (x,y) - center position for tracking. 
  

The algorithm can be briefly described as follows: 

1. Find one cluster in the cluster list that the new AE  
with address xE=(i,j) lies within a seek-distance RK 
of its center (see Fig. 3): 

 
R = | x - xE | <  RK, for all clusters.         (1) 

 
2. If a cluster is found where R < RK , update all the 

clusters features accordingly (see below). 

3. If no cluster is found, create a new one with center 
xE and initialize weights and size, creation time and 
velocity. A new label (unique identification 
number) is assigned to the cluster. 

 

 
Fig. 3. Continuous clustering of address-events. 

 
The cluster update process is sketched in Fig. 3. Let xE be 
the coordinate of an AE produced by the edge of a moving 
(velocity v) object. Let x(t) be the original cluster center, 
then the new center-coordinate x(t+dt) is calculated as: 

 
x(t+dt) = x(t)⋅α + xE⋅ (1- α) , (2) 

 
where 0 < α <1 is a parameter of the algorithm and dt is the 
timestamp difference between the current and the last AE’s 
that were assigned to the cluster. This shifts the clusters 
center by a certain amount controlled by α, which is usually 
chosen near 1 to obtain a smooth tracking.  
Furthermore the cluster size RC is updated: 
 

RC (t+dt)=max(Rmin,  RC(t)⋅α  + R⋅ (1 − α )) (3) 
 

Rmin is a parameter of the algorithm and the max-condition 
assures that the clusters size is kept within certain limits. A 
seek-distance larger than cluster size allows the clusters to 
grow in size and thus adapt dynamically to the size of the 
tracked object. Otherwise, clusters would be just allowed to 
shrink. We define the seek-distance RK for each cluster as a 
multiple of the cluster size RC: 
  

RK=min( Rmax, RC ⋅Rmultiple);  (4) 
 

x(t) 
x(t+dt) 

xE 

RC RK 

v 

(a) 

(b) i 

j 

y 

x 



xE 
RC RK 

C1

C2

where Rmultiple (usually 1 < Rmultiple < 3) and Rmax are 
parameters of the algorithm and the min-condition assures 
that the clusters size is kept within certain limits. The Rmultiple 
parameter is most important when two clusters approach 
each other during tracking. A reasonable value will prevent 
one cluster from instantaneously “overtaking” the other 
cluster because its seek radius is limited. Also the maximum 
change of a clusters size RC is limited by the parameter α. 
For the weight of the cluster W the mean frequency of 
events in this cluster is used, so that 
 

W(t+dt)=W(t)⋅α + 1/dt⋅ (1-α).  (5) 
 

Very inactive clusters have low AE-frequency and 
consequently low weights.  

For a practical application of the algorithm it has turned 
out that a separate definition of α for each single parameter 
position αX, size αR and weigh αW  is advantageous. 

The list of existing clusters is scanned periodically (10 
to 20 times/s) for too old and inactive clusters which are 
then deleted from the list. The velocity vector of the cluster 
is also updated at this occasion. To ensure smooth changes 
of the velocity vector it is also recalculated using α 
 

v(t+dt)=v(t) ⋅ α + v⋅ (1- α ).  (6) 
 
If a new event for an object edge is created outside the seek 
radius of the cluster the object belongs to, the object will 
split up into two overlapping clusters. This situation is 
sketched in  Fig. 4. Successive events might then be 
attributed to the new cluster C2 instead of the long-standing 
C1, and the object might be permanently split into two (or 
more) clusters. The new cluster might also “overtake” the 
long-standing one, by catching all new events from to the 
object for itself. This leads to a discontinuity in the objects 
track because the object will consequently change its label.  

To prevent this situation the cluster list is kept sorted by 
creation time. Consequently, when looping through the list 
to attribute AE’s to clusters, older clusters will be preferred. 
Therefore the new, overlapping cluster will “starve” and be 
deleted very quickly because fewer or no events will be 
attributed to it. By this measure a very smooth and 
continuous tracking of address-event clusters can be 
achieved with the presented algorithm. 

 
Fig. 4. The problem of overlapping clusters in tracking. 

The algorithm consumes only a small amount of 
memory as only the cluster list has to be kept in memory. 
Trials showed that a cluster list of ~20 clusters is sufficient 
to solve most of the test scenarios. As only a few variables 
are used to describe the features of a cluster, 2 kB of 
memory is sufficient for the cluster list. The computational 
complexity is moderate. However, event-address to cluster-
center distances have to be computed several times for each 
new event. Using quadratic clusters instead of circular ones 
can further decrease the computational effort. The features 
of each cluster have to be updated once for every event. 
 
 

4. EXPERIMENTAL RESULTS 
 
The presented tracking algorithm runs in real time on 
vehicle AE data with a timestamp resolution of 1 
millisecond. The system is used for lane change monitoring 
in a traffic surveillance application. The prototype vision 
system was mounted above a test track and AER data 
originating from driving-by vehicles were processed. Fig. 5 
shows three still images from a 3 second tracking sequence 
of two vehicles travelling at a speed of approximately 30 
km/h. To visualize the AER data, the pixel activity 
occurring during a fixed time interval is mapped onto an 
image for an image-like representation of the AER data. The 
tracking result is presented as squares in the images 
encircling the tracked objects. A trace is shown to visualize 
the objects track within the past second. For both lanes, lane 
changes can be observed with the tracking algorithm over a 
distance of typically 50 meters. 



Fig. 6 depicts examples of six vehicle tracks observed 
on a two-lane road. Imager coordinates have been 
transformed to world coordinates using a simple geometric 
projection based on the imager mounting height and optical 
parameters. The x-coordinate shows the road length in meter 
(containing the vehicle direction) while the y-coordinate 
gives of the road width in meter. The distance between two 
adjacent circles on the vehicle track is 0.2 seconds.  

Therefore, the traces with closer circles distance reflect 
the low-speed vehicle compared to the longer distances 
between circles.  

Fig. 7 shows a demonstration of the algorithm on 
simulated AE data for a person tracking application. The AE 
data have been simulated from a video sequence with a 
resolution of 140×180 pixels that is close to our developed 
128×128 imager. On the left part, two images from a 2 
second video sequence have been extracted for illustration. 
On the right side, the simulated AER data of the scene 
including the tracking results is provided.  

The two right subfigures show the different persons 
locations indicated by circles, a unique ID number 
identifying the object and an arrow indicating the direction 
and speed of movement. As an example, ID 198 has been 
correctly tracked while ID 227 was a shadow effect that 
disappeared in the next sequence  

The number listed above each subfigure gives a rough 
estimation of the vehicle speed extracted from the track 
(negative values for approaching vehicles and positive 
values for departing vehicles). 
 
 

W
or

ld 
co

or
din

ate
 x 

(m
)

 
Fig. 6. Example of 6 vehicle tracks. The lane boundaries are 
shown by straight and dashed lines. 

 

 

-32k

34m

19m
m/h

53m
33m

-33km/h
21m

12m
-27km/h

Fig. 5. Three still images from a 3 second tracking sequence showing AER-data with two vehicles driving towards the vision 
system.  Given inside the cluster markers (rectangles) are the distance from the sensor and –if available- the velocity 
extracted from the track. The dashed lines indicate lane boundaries not visible to the sensor. 

 



198

155
171

222

227

155

198

222

285
304

171

 
Fig. 7. Example results for person tracking. 

 
5. CONCLUSIONS 

 
This paper presented an embedded vision system and 
tracking algorithm using data from an asynchronous 
transient vision sensor for real-time applications. The 
tracking algorithm benefits from the capability of this 
imager to detect relative intensity changes and on its 
efficient asynchronous communication, which significantly 
reduce the computational burden as compared to traditional 
video-based traffic surveillance systems, enabling a low-
cost, embedded DSP implementation.  

This concept has been demonstrated for real-time 
tracking of vehicles on a two-lane test track. Further 
application for people tracking has been simulated and the 
preliminary results are promising.  
 

6. ACKNOWLEDGMENT 

 
The authors thank Tobi Delbruck and Patrick Lichtsteiner 
from the Institute of Neuroinformatics at ETH Zürich for 
their work and support on the vision sensor. 
 

7. REFERENCES 
 
[1] L. Alexander and M. Donath, “Differential GPS based 

control of a heavy vehicle,” International Conference on 
Intelligent Transportation Systems, 1999. 

[2] Y. Anzai, “Pattern Recognition & Machine Learning,” 
Morgan Kaufmann, 1992. 

[3] F. Bartolini, V. Capellini, and C. Giani, “Motion Estimation 
and Tracking for Urban Traffic Monitoring,” International 
Conference on Image Processing, volume 3, 1996 

[4] D. Bauer, P. Bühler, N. Donath, H. Garn, B. Kohn, M. 
Korber, M. Litzenberger, J. Meser, C. Posch and P. Schön 
“Embedded Vehicle Counting System with ‘Silicon Retina’ 
Optical Sensor” Workshop on information Optics 2006, 
Toledo, Spain,  June 5-7, 2006. 

[5] D.C. Cheng and H. Burkhardt, “Bubble Tracking in Image 
Sequences,” International Journal of Thermal Sciences, 
Volume 42, Number 7, pp. 647-655(9), July 2003. 

[6] D. Comaniciu and V. Ramesh, “Mean Shift and Optimal 
Prediction for Efficient Object Tracking,” International 
Conference on Image processing, vol.3, p.70-73, 2000. 

[7] D. Comaniciu and P. Meer, “Mean-shift: A Robust Approach 
Towards Feature Space Analysis,” IEEE PAMI, vol.24, no.5, 
2002 

[8] P. Figueroa, N, Leite, R.M.L. Barros, I. Cohen and G. 
Medioni, “Tracking soccer players using the graph 
representation,” Proceedings of the 17th International 
Conference on Pattern Recognition, UK, 2004.  

[9] D. Koller, J. Weber and J. Malik, “Towards Realtime Visual 
based Tracking in Cluttered Traffic Scenes,” In: Proc. of the 
Intelligent Vehicles Symposium, Paris, France, October 1994. 

[10] D. Li, K.D. Wong, Y.H. Hu and A.M. Sayeed, “Detection, 
Classification and Tracking of Targets in Distributed Sensor 
Networks,” IEEE Signal Processing Magazine, 19(2):17--30, 
March 2002. 

[11] P. Lichtsteiner and T. Delbruck, “64×64 Event-Driven 
Logarithmic Temporal Derivative Silicon Retina,” in IEEE 
Workshop on Charge-Coupled Devices and Advanced Image 
Sensors, Nagano, Japan, 2005. 

[12] P. Lichtsteiner, C. Posch and T. Delbruck, “A 128x128 
120dB 30mW Asynchronous Vision Sensor that Responds to 
Relative Intensity Change,” in IEEE International Solid-State 
Circuits Conference (ISSCC2006), San Francisco, USA,  
Februay 2006. 

[13] M. Litzenberger, A.N. Belbachir, N. Donath, G. Gritsch, H. 
Garn, B. Kohn, C. Posch and S. Schraml “Estimation of 
Vehicle Speed Based on Asynchronous Data from a Silicon 
Retina Optical Sensor,” IEEE Conference on Intelligent 
Transportation Systems, Canada, September 2006. 

[14] N.T. Siebel and S.J. Maybank�  , “ Real-Time Tracking of 
Pedestrians and Vehicles,” Proceedings 2nd IEEE Int. 
Workshop on PETS, Kauai, Hawaii, USA, December 9 2001 

[15] H. Veeraraghaven and O. Masoud. N. Papanikolopoulos, 
“Managing Suburban Intersections Through Sensing,” 
Technical Report at Intelligent Transportation Systems 
Institute University of Minnesota December 2002 

[16] www.smart-systems.at/products/products_video_tds_en.html 


