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ABSTRACT 
 
The architecture and prototype applications of an embedded 
vision system containing a neuromorphic temporal contrast 
vision sensor and a DSP are presented. The asynchronous 
vision sensor completely suppresses image data redundancy 
and encodes visual information in sparse Address-Event-
Representation (AER) data. Due to the efficient data pre-
processing on the focal plane, the sensor delivers high 
temporal resolution data at a low data rate. Hence, a 
compact embedded vision system using a low-cost, low-
power digital signal processor can be realized. The one 
millisecond timestamp resolution of the AER data stream 
allows to acquire and process motion trajectories of fast 
moving objects in the visual scene. Various post processing 
algorithms, such as object tracking, vehicle speed 
measurement and object classification have been 
implemented on the presented embedded platform. The 
system's low data rate output, low power operation and 
Ethernet connectivity make it ideal for use in distributed 
sensor networks. Results from traffic-monitoring and object 
tracking applications are presented. 
 

Index Terms— real time embedded vision system, 
temporal contrast imager, traffic monitoring, object tracking  
 

1. INTRODUCTION 
 

In the past, object tracking applications for different 
purposes [9] have emerged from an academically pattern 
recognition problem [2]. Such object tracking applications 
include pedestrian and vehicle tracking  [14] and 
surveillance [10], bubbles tracking [5] and soccer players 
tracking [8], but are not exclusively limited to these 
applications.  

Vehicle tracking is one of the most spread vision 
applications due to the increasing traffic and safety demand. 
The majority of the existing vehicle-tracking systems are 
based on the video image processing. Many video tracking 
systems identify vehicles by virtue of their motion.  In cases 
where objects are moving continuously past the sensing 
camera, the motion segmentation techniques are fast and 

robust. Unfortunately, in cases where the sensing camera 
observes a largely stationary vehicle queue, e.g. in front of 
traffic lights, motion estimation based systems mostly fail to 
follow-up the objects.  

Previous research in automotive tracking systems has not 
been completely successful.  In [9] Kalman-Snakes 
technique is used to provide automobile contours after 
initial motion segmentation step. These contours are used 
for tracking purpose. Block matching techniques to find 
optical flow have been another approach [3], which is 
combined with a priori knowledge of the road geometry to 
handle stationary vehicles.  Isolation of foreground objects 
“blobs” by a background estimation technique has been 
reported in [15]. Principal component analysis is used 
afterwards to classify the blobs and estimate their 
orientation.  

In addition to the limitation of the developed tracking 
methods in terms of performance, video systems usually 
produce a huge amount of data that likely saturate any 
computational unit responsible for data processing. Thus, 
real-time object tracking based on video data processing 
requires large computational effort and is consequently done 
on high-performance computer platforms. As a 
consequence, the design of video-tracking systems with 
embedded real-time applications, where the algorithms are 
implemented in Digital Signal Processor (DSP) is a 
challenging task. 

A further weakness of video detection is the limitation of 
conventional camera systems to operate under wide 
dynamic range lighting, which is typical for outdoor 
applications. Therefore, real-time video-based tracking 
applications are mostly constrained with limited resources at 
the price of the optimal performance.  

There also exist other systems for vehicle tracking using 
the support of satellites for the vehicle follow-up [1]. 
Although those systems might be efficient, they are very 
costly as they are requiring a sensor, a communication link 
and a workstation mounted on each vehicle. 

This paper presents a low-cost smart camera system 
capable of high speed vision for embedded applications. 
The system has been developed using an asynchronous 
temporal contrast vision sensor [12] and the algorithms for 



 
 

object tracking and traffic data acquisition have been 
implemented on a DSP. The system has already been 
demonstrated its performance for vehicle speed estimation 
and vehicle counting [13][4]. This work presents the 
embedded smart camera and its applications to traffic 
monitoring and object tracking. 

The paper is structured as follows. In section 2, the smart 
camera architecture is described. The applications and 
experimental results are described in section 3. Section 4 
gives a conclusion.  

 
2. SMART CAMERA ACHITECTURE 

 
2.1. Vision Chip 

 
In contrast to traditional CCD or CMOS imagers that 
encode image irradiance and produce constant data volume 
at a fixed frame rate, irrespective of scene activity, the 
asynchronous vision sensor used in the presented smart 
vision system contains an 128×128 pixel array of 
autonomous, self-signaling pixels which individually 
respond in real-time to relative changes in light intensity by 
placing their address on an asynchronous arbitrated bus. 
Pixels that are not stimulated by a change in illumination are 
not triggered; hence static scenes produce no output. 
Because there is no pixel readout clock, no time 
quantization takes place at this point.  

The sensor operates largely independent of scene 
illumination, directly encodes object reflectance, and greatly 
reduces redundancy while preserving precise timing 
information. Because output bandwidth is automatically 
dedicated to dynamic parts of the scene, a robust detection 
of fast moving objects at variable lighting conditions is 
achieved. The scene information is transmitted event-by-
event to a DSP via an asynchronous bus. The pixel locations 
in the imager array are encoded in the event data that are 
reflected as 14 bits coordinates in the image space in the 
form of Address-Events (AE) [12]. Additional to the pixel 
address the polarity of the contrast change is encoded in a 
15th bit as “on” of “off” event, representing a change from 
dark to bright or vice-versa. 

The high dynamic range of the photosensitive element 
(>120dB or 6 decades) makes the imager ideal for 
applications with uncontrolled light conditions. Figure 1 
shows typical AE data of a highway monitoring scene 
acquired with the transient imager and a still video image 
for comparison. In order to visualize the AE data, events 
have been collected for a 50 millisecond interval and 
rendered like a video frame. The different gray shadings 
encode pixel activity per unit time, with black being the 
highest activity of “off” events and white indicating high 
“on” event activity. Note that, due the sensitivity of sensor 
to even small contrast changes all vehicles have almost the 
same representation in the data, independent of vehicle 
color. The most effective way of processing address-event 

data however does not make use of video framing but takes 
advantage of the efficient coding of the visual information 
by directly processing the asynchronous spatio-temporal 
information on moving objects contained in the AE data 
stream. 

 

 
 

Fig.1 Example of asynchronous AE data represented as a 
video frame (top) and a video still image of the same scene 
(bottom). 

 
2.2. Embedded System 

 
Figure 2 depicts the general architecture of the smart vision 
system, which comprises the temporal contrast imager, a 
First-In, First-Out (FIFO) buffer memory and a simple low-
cost and low-power fixed-point DSP (Analog Devices 
Blackfin® BF537). It has a maximum frequency of 600 
MHz, 128 KB internal memory and 32 MB external 
SDRAM memory. This limited memory resource might be 
far-too low for the data processing of any high-resolution 
video system as it does not fit the traditional video 
processing needs. The imager and the DSP consume in total 
roughly 2.5 W of electrical power. The presented embedded 
system has been specifically designed to process 
asynchronous address-event data in an efficient way. The 
location (address) of the event generating pixel within the 
array is transmitted implementing a simple 4-phase 
handshake protocol. Following a ‘data available’ request 
from the sensor, the 15-bit event is taken from the 
asynchronous bit-parallel address-event bus, stored in a 



 
 

FIFO and an acknowledge signal is sent back to the sensor. 
The FIFO is placed between the imager sensors and the 
DSP to cope with peaks of AE activity and is capable of 
handling up to 40 MHz memory access frequency. A 
process running on the DSP buffers the data for further 
processing as long as the FIFO EMPTY signal is not active. 
In the processing stage, every AE received by the DSP is 
labeled by attaching the processor clock ticks with 1 
millisecond precision as a timestamp. These data are the 
basis for traffic data acquisition and object tracking 
algorithms.  

 
      

 
 
Fig. 2. Schematics of the smart camera architecture. 
 
The DSP also controls on chip digital-analog-converters 

that generate the internal bias voltages for the imager via a 
serial interface. These control bias voltages allow for an on-
the-fly adjustment of functional parameters like e.g. the 
contrast thresholds. Computation results such as vehicle 
counts or object tracks are sent via Ethernet to a host 
computer. Alternatively, the Ethernet connectivity allows 
connecting to other smart camera systems attached to a 
network of sensors and exchanging information about 
tracked objects together with geo-location information. The 
processing power remaining after completion of tracking 
subroutines would be sufficient to process this information 
to e.g. track objects from one sensors detection range to 

another sensors location. The full processing comprises the 
AE acquisition and time stamping, object clustering and 
tracking. Other AE processing algorithms for the vehicle 
speed estimation [7],[13] counting [4] and classification 
have also been implemented on this DSP.  

Due to its low power consumption the system is suitable 
for autonomous solar or battery supply operation. Figure 3 
shows a photograph of the compact smart camera system 
including the optics, the sensor and processor board with a 
total size of 7×7×7 cm. For a detailed specification of the 
smart camera system refer to the datasheet [16]. 
 

 
 
Fig. 3. Photograph of the smart camera system. 
 

 
3. APPLICATIONS AND RESULTS 

 
3.1. Traffic Data Acquisition 
 
The smart camera has been installed at a highway test site 
for monitoring 4 lanes of traffic simultaneously. Single 
vehicle detection and data acquisition comprising time 
stamp, lane number, vehicle speed and length and 
classification into two classes (cars and trucks) have been 
implemented in the firmware of the system. The vehicle 
detection is based on monitoring the event activity in pre-
defined regions-of-interest (ROI) corresponding to the 
highway lanes [4]. The speed and length estimations benefit 
from the high temporal resolution and the continuous 
information on the vehicle tracks found in AE data [13].  
Length measurement is realized by measuring the presence 
of the vehicle within the ROI with millisecond precision and 
correcting it by the ROI’s length, optical/geometric 
considerations derived from the known viewing angle. A 
rough classification of vehicle type is based on this length 
estimation. 

Figure 4 shows representative results of traffic data 
acquisition accumulated from two lanes at a test site with a 
80km/h speed limit, over the course of two days.  
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Fig. 4. Vehicle quantity and average speeds given in 5 minutes time intervals for two days of traffic data acquisition. 

 
The traffic volume (top) and the average speed (bottom) are 
shown in 5 minutes resolution, scaled to vehicle count per 
hour per lane. As city inbound traffic flow is monitored, 
traffic peaks around 7am.Traffic congestions, recognizable 
by distinct drops in average speed, are observed in the 
morning of the first day and the evening of the second day. 

The vehicle counting error has been evaluated 
against 6 hours of manually annotated video recordings 
containing approx. 7000 vehicles. Speed estimation errors in 
the speed range from 20 to 120 km/h been evaluated by 
measurement with calibrated light barriers as reference [13].  

The connectivity of the smart camera system would 
allow to exchange information about traffic flow situation 
between different cameras installed at several locations 
along a route, thus enabling a network of smart cameras to 
assess the overall traffic situation along a certain route 
section. The differences of vehicles quantities measured at 
several successive camera locations e.g. allow to derive the 
vehicle density within a certain road section by the camera 
network itself, which is an important parameter in traffic 
telematics. 
 
3.2. Object Tracking 
 
The tracking algorithm implemented in the smart camera 
firmware uses a continuous clustering of AE’s and tracking 
of clusters. The algorithm processes each event on-the-fly, 
as it is received without the need to buffer large amounts of 
AE data (little memory consumption) [11]. This is of special 

importance when using low-cost and low memory resource 
systems.  

The simple tracking algorithm is outlined as 
follows: Each new event received by the DSP is assigned to 
an existing cluster if it fulfills a distance criterion, and the 
AE’ pixel coordinate is used to update (shift) this clusters 
center position for tracking [6]. If an event received can not 
be assigned to an existing cluster a new cluster is seeded 
and kept hidden as long as the number of events attributed 
to it lies below a threshold. If an existing cluster did not 
receive enough events during a period of time it is deleted.  

The algorithm fully exploits the one millisecond 
time resolution of the AE data and consumes only a small 
amount of memory as only the cluster list has to be kept in 
memory. Trials showed that a cluster list of ~20 clusters is 
sufficient to solve most of the test scenarios. As only a few 
variables are used to describe the features of a cluster, 2  kB 
of memory is sufficient for the cluster list. The 
computational complexity is moderate. However, event-
address to cluster-center distances have to be computed 
several times for each new event. Using quadratic clusters 
instead of circular ones can further decrease the 
computational effort. The features of each cluster have to be 
updated once for every event. 

Fig. 5 shows a demonstration of the algorithm on 
simulated AE data for a person tracking application. The 
AE data have been simulated from a video sequence with a 
resolution of 140×180 pixels that is close to the 128×128 
imager. On the left part, images from a 4 second video 
sequence showing people leaving and elevator cabin have 



 
 

been extracted for illustration. On the right hand side, the 
simulated AE data of the scene including the tracking 
results is provided. It shows the different persons locations 
indicated by circles, a unique ID number identifying the 
object and an arrow indicating the direction and speed of 
movement. As an example, cluster with ID 198 has been 
correctly tracked throughout the sequence, while cluster 
with ID 227 was produced by a shadow effect and 
disappeared in the next sequence.  

The interconnection of several smart cameras with 
overlapping observation areas allows to continuously track 
an identified object on its way e.g. through a building by 
sending the object and track information (motion vectors) to 
neighboring smart cameras.  
 
 

 
 
Fig. 5. People tracking example. Video frames and AE data 
frame representation with tracked object ID numbers and 
velocity vectors on top. 

Table 1 gives an overview of key performance parameters 
for the presented traffic monitoring and the object tracking 
applications. 
 

4. CONCLUSION 
 
An embedded smart camera system capable of traffic 
monitoring and high speed object tracking has been 
presented. The signal processing in the system strongly 
benefits from the sparse data and high temporal resolution 
delivered by the temporal contrast vision sensor used. 
Traffic parameter acquisition and object tracking are 
performed in real time by a low-cost, low-power DSP. 
Representative traffic and object tracking data examples 
have been presented. The system is equipped with an 
Ethernet connection for data transfer which enables to 
connect multiple cameras via TCP/UDP protocol to form a 
network of smart cameras. 
 

 
Table 1: Overview of traffic data acquisition and object 
tracking key performance values. 
 
Traffic data acquisition 
Lanes monitored up to 4 
Speed estimation error < 3% 

1h interval:     < 3% Counting error 
3min interval: <10% 

  
Object tracking 
Temporal resolution 1 ms 
Objects tracked up to 20 
Data memory consumption 2 kB for cluster list 
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