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Abstract--- Although artificial neural networks have 
been applied to problems within hydrology for over ten 
years, there is little consensus on the ‘best’ type of neural 
network model to use and the most effective means of 
training the chosen model. In order to explore the 
different approaches neural network modellers use to 
forecasting river stage, an international comparison 
study was undertaken during 2004. 

This research was based on a set of rainfall and river 
stage data covering three winter periods for an 
unidentified river basin in England (with a catchment of 
331,500 Ha in the north of the country), sampled at 15 
minute intervals. Several neural network enthusiasts took 
part in the study from a number of different countries. 
The preferred methodologies and forecasting outputs 
from a number of ‘blind’ models of river stage developed 
by the participants have been collated and are presented 
in this paper. 
 

I. INTRODUCTION 
 

Artificial neural networks (ANNs) have been applied to 
the problem of hydrological modelling since the early 1990s 
and there are now over 200 papers published in this field. 
Despite this extensive literature base, a common set of 
operational methodologies has still to emerge, although some 
attempts have been made to define one (Dawson and Wilby, 
2001). In addition, the extensive range of different types of 
network, training algorithms and software tools available, 
means that a standard implementation of this kind of model 
has not emerged and the application of these models in real 
time is still awaited. 

In order to explore and evaluate the approaches that 
different neurohydrologists employ, an inter-comparison 
exercise was established. This exercise involved the 
dissemination of a benchmark catchment data set to a 
number of participants. Each was given the freedom to 
develop two ANN models for three forecast horizons: t+8, 

t+16 and t+24 hours ahead. In this paper the results of the 
t+24 hour ahead forecasts are presented and discussed as this 
is the most challenging of the three lead times.  

Participants in this exercise were provided with 
background information about the unknown catchment and a 
standard rainfall-runoff data set (split into two calibration 
sets and one test data set). Each participant was asked to 
submit two modelling solutions for each lead time, one that 
used upstream data as predictors and one that did not. The 
participants were free to develop any neural network model 
using any appropriate training algorithm, and to use the two 
calibration data sets provided in whatever manner was 
considered prudent (for example, using one for training and 
one for validation).  

This paper discusses the motivation and background to 
this investigation, it provides further particulars on the design 
of the experiment, and concludes with a discussion of the 
results and some suggestions for further research. This paper 
is also an extension of work from a similar study undertaken 
during 2003, which was based on an experimental catchment. 
 

II. CATCHMENT DESCRIPTION 
 

Table I provides important hydrological statistics of the 
catchment in northern England that formed the basis of this 
exercise. These were the only data provided to the 
participants to ensure that the modelling was undertaken 
‘blindly’. In other words, none of the participants were 
disadvantaged through lack of first hand knowledge of the 
catchment.  
 

III. BENCHMARK DATA SETS 
 

Three data sets consisting of 15 minute data were made 
available in this study. Two data sets were provided for 
calibrating the network models, covering the periods 1 
October 1993 to 31 March 1994 (containing 17,472 data 
points) and 1 October 1995 to 31 March 1996 (containing 



17,568 data points). A test set was provided covering the 
period 1 October 1994 - 31 March 1995 (containing 17,472 
data points). Each of the data sets contained river stage data 
(m) at three upstream sites, rainfall data at five catchment 
rain gauges (mm) and stage data (m) at the target site. The 
peak stage in the two training sets was 5.04m and 4.13m, 
while the peak stage in the test set was 5.78m (thus providing 
a reasonable test of modelling skill). 

 
TABLE I 

CASE STUDY CATCHMENT DESCRIPTORS 
 

Catchment 
area (Ha) 

331500 

Elevation 
(metres) 

10-710 

Geology Mixed: Carboniferous Limestone and 
Millstone Grit to the west 
[headwaters]; Permo-Triassic rocks to 
the east [basin out]. 

Soils Peats and stagnogley soils in the 
uplands; stagnogleys, sandy gley soils 
and brown earths in the lowlands. 

Land–use Land use reflects both topographic 
and precipitation influences: moorland 
(24%) and grassland (33%) 
predominate to the west; tilled land 
(31%) to the east; 4% of the 
catchment is woodland; 5% could be 
classed as urban or suburban. 

Annual 
rainfall 
(mm) 

906 mm [1969 - 1990] 

Annual 
runoff (mm) 

464 mm [1969 - 1990] 

Runoff (%) 51 

Drainage Mixed: three major sub-catchments 
are involved. Minor baseflow 
component: baseflow index is 0.43. 

 
 
 

It was left to the participants to decide how to use the two 
calibration data sets; for example, they could use both sets 
for training their models or use one set for training and one 
set for validation (i.e. selecting the ‘best’ model). The 
participants were also free to decide how to pre-process the 
data into appropriate predictors for the ANN models – for 
example, identifying strong antecedent correlations, using 
rainfall averages and/or moving averages where appropriate. 

The participants were asked to produce two models for 
the t+24 hour ahead forecasts – one that could use upstream 
data (pre-processed as required) with at least a 24 hour lead 
time and one that could not (i.e. it could only use antecedent 
rainfall pre-processed as required). Both models could use 
antecedent river stage at the target site as an additional 
predictor providing at least a 24 hour lead time was used. 

The data sets also ‘included’ a number of missing values 
for the rain gauges and the upstream sites. In addition, some 
of the rainfall data appeared to be somewhat inaccurate – for 
example, one gauge recorded a rainfall of 62.4mm in 15 
minutes (the UK’s record for 15 minutes is 50mm). The 
participants were left to deal with these missing and 
inaccurate data as they felt appropriate. 
 
 

IV. EXPERIMENTS 
 

Of the seventeen participants originally contacted to take 
part in this study, five produced models using the benchmark 
data sets. Table II summarizes the different approaches used 
by the participants in this study. The table shows the 
variation in software employed - from off-the-shelf packages, 
such as the Neural Network Toolbox for MATLAB, to 
software written by the participant themselves in Pascal. 
Networks used included the common Multi Layer Perceptron 
(MLP), self organising maps and an ARMAX model (auto 
regressive moving average with exogenous inputs) for 
comparison. Data were either normalised or standardised to 
[0.1, 0.9]. 

The decision as to when to terminate training was based 
on cross validation with the second training set or after a 
certain number of epochs had been performed.  

A number of approaches were used to pre-process the 
data and identify suitable predictors for the models. The 
simplest predictors were unadjusted upstream flow, 
unadjusted rainfall at each site, and antecedent flow at the 
target site. More sophisticated predictors included moving 
averages of rainfall, averaging rainfall across all rain gauges 
and calculating appropriate lags for each of the predictors 
identified. In order to speed up the training process one 
participant reduced the first training set from 17,472 data 
points to 1,000 data points by selecting every sixteenth data 
point from the data set. This did not lead to any reduction in 
model performance and speeded up training time 
significantly. Finally, a cross-section of training algorithms 
was employed including Backpropogation, Bayesian 
regularization and SOM-batch training. 

It is noted that no comparisons have been made with 
physical or conceptual rainfall-runoff models. The purpose of 
this study was not to compare results with other approaches 
but to compare alternative neural modelling approaches with 
one another and a standard statistical approach. 



TABLE II  
 SUMMARY OF DIFFERENT APPROACHES USED IN THE STUDY 

 
Software Used Own software on Matlab, 

Matlab with Neural Network 
Toolbox, own software 
(Pascal), SOM Toolbox 2. 

Network Types Self organizing map – 
multiple linear regression, 
MLP. 

Activation Functions Sigmoid. 
Normalisation / 
Standardisation 

Normalisation, [0.1, 0.9]. 

Stopping Criteria Number of epochs, validation 
set, minimise SSE. 

Predictors Mean of all rain gauges, 
moving average of each rain 
gauge, Q, upstream flow, sum 
of rainfall over time, various 
lagged rainfall and upstream 
flow. 

Training Algorithms Bayesian regularization, BP, 
SOM-batch training 
algorithm. 

 
V. ERROR MEASURES 

 
There is a general lack of consistency in the way that 

rainfall-runoff models are assessed or compared (Legates and 
McCabe, 1999) and one should not rely on individual error 
measures when assessing ANN model performance (Dawson 
and Wilby, 2001). Because of these considerations a number 
of complementary error measures have been used in this 
study including: 
 

• RMSE (Root Mean Squared Error), which is used in 
many studies and provides a good measure of fit at high 
flows (Karunanithi et al., 1994).  

• CE (Coefficient of Efficiency) and r2 (r-squared), which 
are independent of the scale of data used.  According to 
Shamseldin (1997) a CE value above 0.9 is ‘very 
satisfactory’, a value between 0.8 and 0.9 is ‘fairly 
good’ while a value below 0.8 is ‘unsatisfactory’. 

• MAE (Mean Absolute Error) which is not weighted 
towards high flow events and provides an indication of 
overall accuracy. 

• SE (Standard Error) which provides a measure of the 
spread of the errors produced by the model (calculated 
as the standard deviation of the errors). 

 
VI. RESULTS 

 
The results of the experiments are presented in Tables 3 

and 4. The participants are represented in these tables as A, 
B, C, D and E. The two models each participant produced 
(one using upstream data and one that did not) are 

represented by Xa and Xb respectively. Table 3 summarizes 
the model structures produced by the participants which were 
evaluated against the test data set. The data points listed in 
Table 3 represent the amount of data available for testing 
each participant’s model once lags, moving averages etc. had 
been calculated. The x in the structure indicates that this 
parameter is unknown. 

Table 4 provides the summary statistics for all the models 
when assessed against the test data set. As an example of the 
results produced, Fig. 1 shows the observed test data, in this 
case plotted with the results of the ANN model produced by 
participant D (using upstream data in the model).  

 
TABLE III 

SUMMARY OF MODELS 
 

Model Structure Data points 
Aa 4-4-1 17313 
Ab 3-10-1 17313 
Ba 12-x-1 17007 
Bb 7-x-1 17007 
Ca x-x-1 17376 
Cb x-x-1 17376 
Da 8-10-1 17357 
Db 7-20-1 17357 
Ea 2-4-1 17280 
Eb 6-6-1 17279 

 
TABLE IV  

RESULTS OF MODELS DURING TESTING 
 

Model RMSE 
(m) 

CE MAE 
(m) 

r2 SE (m) 

Aa 0.4681 81.98 0.3129 0.9063 0.4673 
Ba 0.5329 76.78 0.3702 0.8770 0.5329 
Ca 0.3111 92.06 0.2347 0.9768 0.2859 
Da 0.5164 78.11 0.3265 0.8938 0.5065 
Ea 0.5324 76.66 0.4132 0.7922 0.5071 
      
Ab 0.4958 79.79 0.3246 0.8952 0.4952 
Bb 0.5074 78.95 0.3433 0.8947 0.5037 
Cb 0.9461 25.59 0.7686 0.9152 0.5516 
Db 0.5763 72.74 0.3733 0.8649 0.5656 
Eb 0.5399 76.00 0.3460 0.7729 0.5303 
      
Summary      
Min: 0.3111 25.59 0.2347 0.7729 0.2859 
Max: 0.9461 92.06 0.7686 0.9768 0.5656 

 
We begin first by looking at those models that included 

upstream data as predictors (Xa). According to all statistics 
the model produced by participant C was the most accurate 
when assessed using the test data set. This model was the 
statistical ARMAX model that was used for comparative 
purposes. The models produced by participants B and E were 
the least accurate depending upon which test statistic is 
considered. Model Ba contained the most predictors of all the 
models produced – using lagged unadjusted data from all 
five rain gauges, and unadjusted flow data from the upstream 



sites (at different lag periods). This shows that increased 
complexity does not necessarily provide the most accurate 
model and parsimonious models such as Ca can often prove 
to be more accurate and efficient.   

For those models that did not include upstream data as 
predictors (Xb), the results are less conclusive. For example, 
the model produced by participant C in this case is the least 
accurate according to the CE statistic (25.59%) although 
according to the r-squared statistic, it is the most accurate 
(0.9152). Model Cb has the largest RMSE and MAE 
(0.9461m and 0.7686m respectively) while model Db has the 
largest SE statistic (0.5656m). 

The second set of results highlight the problems of using 
single error measures for assessing the accuracy of models. 
For example, using the CE statistic one might conclude that 
model Cb is particularly inaccurate, whereas when using the 
r-squared statistic one might conclude that this is the 
strongest model.  Fig. 2 highlights why this model produced 
these seemingly contradictory results. Although the model 
follows the general shape of the hydrograph quite well 
(hence the r-squared statistic is reasonably ‘high’) it does so 
at a much lower level (and thus statistics such as MAE and 
RMSE are ‘poor’). If one were to implement this model for 
real time flood forecasting one would need to be aware that 
while the model might be modelling general changes in flow 
accurately at t+24 hours ahead, it would be generally 
underestimate the flow magnitude. 

VII. CONCLUSIONS 
 

This study has enhanced collaboration between scientists 
in this promising field of research and the results, like many 
other studies before, show the potential benefits of neural 
network rainfall-runoff models.  

Although only a limited number of participants took part 
in the study another project of this nature is currently been 
undertaken with a simplified benchmark data set (missing 
data and anomalies have been excluded). Those wishing to 
take part in a follow-up study, or with benchmark data that 
could be used, should contact Dr C.W. Dawson via email at 
C.W.Dawson1@lboro.ac.uk. 
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Fig. 1. Model Da during testing 
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Fig. 2. Model Cb during testing 

 
 


