
 
 

 

  

Abstract— This paper presents a 2×256 dual-line vision 
system for object velocity estimation based on the 
asynchronous output data. For real-time velocity estimation, a 
processing method has been developed and implemented on 
the digital signal processor. It exploits the sparse 
asynchronous data representation from the dual-line sensor 
with high temporal resolution (better than 100 μs) and low 
latency. The processing concept includes the object contours 
extraction, velocity estimation and scaling. Three approaches 
are used and evaluated for the velocity estimation. The first 
and second approaches use the mean and median object 
detection time, respectively for the object velocity calculation. 
In the third approach, the statistical linear fit RANSAC is 
used to extract the object time. This processing concept has 
been evaluated on object velocities that range from 1 to 22 
m/s, for the three velocity estimation approaches and a 
comparative study has been provided. The experimental 
results included show a velocity estimation error < 1% using 
RANSAC. 

I. INTRODUCTION 
OWADAYS several systems exist for object velocity 

estimation that include optical sensors like LIDAR 
(Laser Imaging Detection And Ranging) [6][12], non-
optical sensors, like microwave RADAR (RAdio Detection 
And Ranging) [7], audio systems [10] or inductive loops 
[1] and using video-based systems [2][3]. 

Several processing tools [2][5] have been developed as 
well to improve the velocity estimation accuracy by pre-
processing (e.g. data filtering and normalization) and 
interpreting the sensors’ data. Most of the tools have been 
developed for video-based systems as they offer a wide 
range of applications, which are driven by the implemented 
algorithm. 

Two parameters are required for the velocity estimation 
of a moving object: the object trajectory and the time spent 
by the object to pass over a certain distance along the 
trajectory. Therefore, several acquisitions of the object 
have to be taken at different time intervals to extract the 
trajectory and the time information.  Classical video-based 
systems equipped with array pixels or multiple-line pixels 
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produce constant data volume at a fixed rate ranging from 1 
to 1000 images/s. Considering a moving object at a velocity 
of 10 m/s on a field of view of 10 cm, then the object takes 
10 ms to cover the field of view. Therefore, a minimum rate 
of 100 images /s has to be used to calculate the average 
object speed. For faster objects motion, the acquisition rate 
has to be further increased to allow the object velocity 
estimation. The major problem with the classical video-
based systems is the type of the data acquisition that is 
synchronous, such that a constant data volume is constantly 
delivered by the sensor for the estimation of the high-speed 
object velocity. Thus, the readout and processing of the 
largely redundant data ultimately face limitations due to 
computational effort and power consumption.  

An asynchronous transient vision sensor has been 
developed [8] containing an array of 128×128 autonomous, 
self-signaling pixels, which individually respond in real-
time to relative light intensity changes by generating events 
coding the pixel address upon activity on the scene. Pixels 
that are not stimulated by a change in illumination are not 
triggered; hence static scenes produce no output. This 
system has been demonstrated for vehicle speed estimation 
and results have been published in [9]. For this system, the 
time information “timestamp” is attached to the address 
events at the processing unit level with 1ms resolution. 

The vision sensor architecture has been modified and a 
dual-line sensor chip has been developed [11] that includes 
a clock to provide more accurate time information at the 
readout electronic level with up to 10 MHz frequency 
resolution (≥ 100ns time interval). This paper presents the 
concept and results for the object velocity estimation using 
this dual-line sensor with three estimation approaches: the 
Mean, the Median and a linear fit using RANSAC 
(RANdom SAmple Consensus) [4]. 

The paper is structured as follows. In section II, the dual-
line sensor system is presented including the data format. 
Section III describes three approaches for the velocity 
estimation. The experimental results after the application of 
the presented algorithm on the real data are discussed in 
section IV including a comparative study. A brief summary 
for conclusions is given in section V.  
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II. THE DUAL-LINE SENSOR SYSTEM DESCRIPTION 
The dual-line sensor system contains a sensor chip and a 
processing unit for the analysis and the interpretation of the 
sensor data. The dual-line sensor system and the data 
format are briefly described in the following subsections. 

A. Dual-line Sensor system 
The layout of the dual-line sensor system is depicted in 

Fig.1. It comprises the following modules: 
1. A “silicon retina” sensor chip [11] that contains a 

dual-line arrangement with 2×256 autonomous 
pixels, which are sensitive to local temporal 
contrast. The distance between the two lines is 
250μm (on-chip). This distance and the event 
generation time are important parameters for the 
velocity estimation of objects crossing both lines. 

2. Auxiliary electronics for on-the-fly configuration of 
the sensor chip. This allows adapting the sensor to 
different scene conditions like varying illumination, 
object reflectance and speed. 

3. A FIFO to handle peak data rates.  
4. A data processing unit that is responsible for treating 

and interpreting the data. This module contains the 
implemented algorithms for the real-time object 
velocity estimation that are described in section III. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  A diagram of the dual-line sensor system 
 

B. Data Format 

The dual-line sensor chip encodes the information in the 
form of TAE (Timed Address Event) representation. The 
TAE stream consists of the event generation time 
(timestamp) concatenated to the AE (Address Event), 
which encodes the coordinates of the pixel in the 2×256 
matrix. The sensor chip can generate a timestamp at a 
maximum frequency of 10 MHz (time interval ≥  100 ns) 
that is far too high for any existing vision sensor chip.  

The AE are classified into two types; ON-events that 
represent a fractional increase in intensity and OFF-events 
that reflect a fractional decrease. The TAE data word is 16 
bit wide where the most significant bit (bit 15) is used to 
distinguish between the timestamp and the AE. Examples 
of the TAE data streams are depicted in Fig. 2. One 
timestamp can be assigned to one or several AEs, which 
occur in the next timestamp interval (see the upper part of 
Fig. 2). A timestamp can also be generated without 
following AEs if the Timestamp counter wraps around (see 
the lower part of Fig. 2). 

Fig. 2.  Two examples of TAE data stream 

III. VELOCITY ESTIMATION 
 

The object velocity estimation concept (Fig. 3) consists of 
four steps: object detection, contours extraction, velocity 
estimation and scaling. Those steps are detailed in the next 
subsections. 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

Fig. 3.  Overview of the velocity estimation concept 
 

The 2-D object representation with the dual-line sensor 
consists of the pixel index (y-axis) versus the time (x-axis). 
The x-axis represents the event generation time in units of 
the timestamp period, the y-axis is the pixel address (0-
255). Fig. 5 shows data examples from one pixel line for a 
ball and a cube passing across the sensor’s field-of-view 

Auxiliary 
Electronic

Data 
Formation 

Data 
Buffer  

Data 
Analysis 

 
FIFO 

 
Data Processing 

          Ethernet       

Readout Electronic 

Dual-line pixels 

Sensor Chip 

Contours Extraction 

Velocity Estimation 

Velocity Scaling 

Object Detection 

TAE Data 

Result 

TAE

t
TS AETS AE AE AE AE AE TS AE AE AE AE AE... TS

TAE

t
TS AE AE TS AE AE AE AE... TS AE

indicating TS counter wrap around

TS AE TS AE AE AE AE

timestamp for the succeeding address events 
and TS counter wrap around indication

TS



 
 

 

with a velocity of 0.8 m/s at a distance of about 15 cm. The 
filled dots represent the OFF events while the circles show 
the ON events. The timestamp interval was configured to 
10μs. The original object shapes (ball and cube) are 
depicted in Fig. 4. It can be noticed that the time (x-axis of 
Fig. 5) can be scaled to retrieve the original shape 
dimension. The scale factor is the object velocity v as the 
distance x is calculated as follows:  
                                            x = v⋅ t  (1) 
 
where t is the event generation time. Therefore, an accurate 
velocity estimation is also useful for the exact shape 
representation. 
 
 
 
 
 
 
 
 

Fig. 4.  Original shapes: ball (right) and cube (left) 
 
 
 
 
 
 
 
 
Fig. 5.  Representation of data from the ball (right) and the cube (left) with 

the dual-line sensor chip 

A. Object Detection 
The first processing step consists of detecting an object 

out of the TAE data stream. The first intuitive idea is to 
monitor the TAE data rate and to flag an object when the 
event rate exceeds zero to a maximum rate. Fig. 6 presents 
the rate (event/ms) of the OFF-events (Fig. 6.(a)) and the 
ON-events (Fig. 6.(b)) for both objects shown in Fig. 4.  It 
can be noticed two clusters of events and many isolated 
peaks, mainly due to the ON-events outliers.  

To improve the object detection, an average filter on the 
event rate has been performed for smoothing the event rate 
distribution to remove the outliers and better localize the 
object. Fig. 7 shows the average filter results on the events 
rate. It can be clearly noticed the smoothness of the events 
rate distribution over the time that facilitate the object 
detection. 

B. Contours Extraction 
The contours extraction algorithm removes the events, 

which are considered not being part of the shape, from the 
data stream. In case of smooth contrasted object edges, 
every pixel may generate several consecutive events due to 

the long lasting contrast amplitude differences. Therefore, 
it is assumed that the object edge can be reconstructed by 
the first event per pixel. The algorithm distinguishes 
between ON and OFF events during the events removal. It 
retains the first ON and OFF event per pixel occurring 
within a predefined time interval. The time interval is 
calculated starting from the first event occurrence. The 
interval strongly depends on the object velocity and size 
and has to be adapted to the application at hand. 

 

 

 
Fig. 6. Monitoring of OFF-events (a) and ON-events (b) rates 

 

 
 

 
Fig. 7. Monitoring of average OFF (a) and average ON (b) events rates  
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Fig. 8. Original data from a cube (a) and a ball (c) and their resulted data 
after the contours extraction showed in respectively (b) and (d).  

 
Fig. 8 shows the contours extraction results using data 

from the cube and the ball. It can be seen that the object 
shapes have been correctly extracted while removing the 
isolated events (outliers). All the results given so far were 
performed on data from one line of pixels. For the velocity 
estimation, the processing is performed on data from the 
two lines of pixels. 

C. Velocity Estimation 
For the velocity estimation either ON or OFF events from 

both lines of pixels can be used. In our example (Fig. 8), 
the OFF-events are used for the estimation as they present 
worse distribution than the ON-events in terms of 
uniformity of the distribution and the pixel jitter, for the 
worst case scenario. Three approaches are used for the 
generation time estimation of the OFF-events: the Mean, 
the Median and the RANSAC fit [4]. All three approaches 
aim to extract the time difference of the OFF-events 

occurrence between both lines of pixels in order to estimate 
the object velocity v1 using this equation: 

 
                                           v1 = Δ x /Δt  (2) 

where Δ x is the distance between both lines of pixels i.e. 
250μm and Δt is 
                                           Δt = tOFF1 - tOFF2  (3) 

where tOFF1 is the OFF-events occurrence time from one 
object on the first line and the tOFF2 is the OFF-events 
occurrence time from the same object on the second line. 
Therefore, the velocity estimation accuracy depends on the 
tOFF1 and tOFF2 accuracy that is evaluated using the three 
different approaches. 

 
The Mean approach extracts the average time of the 

OFF-events. This approach has the advantage to be fast and 
to provide a good measure of central tendency for roughly 
symmetric distribution of the events. However, it can be 
misleading in case of skewed distributions as in the 
presence of outliers. 

 
The Median approach extracts the median time of the 

OFF-events after sorting the occurrence time in an 
ascending form. This approach has the advantage to be 
useable for highly skewed distributions as it is robust for 
transient phenomenon and against outliers. 

 
The RANSAC approach is an analytic procedure, which 

fit the data to a straight line. It performs the following: 
1. Take randomly two samples and calculate the line 

which passes exactly through these samples. 
2. All samples that are within a pre-specified distance θ 

to the line are put into the support set. 
3. Repeat this process many times. 
4. Select the line with the largest support set (if there is 

more than one take the one with the smallest residual 
error). 

The complexity of RANSAC exponentially increases 
with the number of measurements to fit. However, a subset 
of points can be taken to speed up the processing. It has 
been shown that RANSAC obtains the theoretically optimal 
breakdown point of 50%, i.e. it still can fit a line if not 
more than 50% of the measurements are outliers. 

After extracting the slope and the offset value using the 
RANSAC approach, a time is calculated for the central 
(median) pixel for each line that is used for calculating the 
time difference Δt between both lines. 

Fig. 9 presents the time calculation on both line using the 
mean (:), the median (-.) and the RANSAC (- -) 
approaches.  The calculated Δt is 9.4 ms using the mean, 
10.2 ms using the median and 10.6 ms using the RANSAC 
approach. This shows the accuracy differences between the 
three approaches. Indeed, the case of the ball is worse than 

(a) 

(b) 

(c) 

(d) 



 
 

 

with the one with cube as its edge distribution is more 
compact with respect to the occurrence time.     

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 9. OFF-events occurrence time estimation on pixels line 1 and line 2 

using the Mean (:), Median (-.) and RANSAC (- -) approaches. 

  

D. Velocity Scaling 
In the previous subsection, the velocity has been 

estimated on the chip dimension. The aim of this step is to 
convert this velocity estimate to the scene coordinates. This 
is a critical issue as it depends on an external factor that is 
the crop factor of the optics. This problem can be solved if 
this magnification factor is known for a specific lens and 
for a dedicated distance between the sensor and the object. 
Otherwise, a calibration process is needed. 

In our case, the calibration is performed for an object 
with known dimension such that we map the real object 
dimension to the object in pixel size. The crop factor A is 
calculated as follows: 
                                    A = D / N ⋅ P  (4) 
 
where D is the original object dimension, N is the number 
of pixels, which map the object and P is the pixel length. 
After estimating the magnification factor, the object 
velocity v can be calculated using 
 
                                        v = A ⋅ v1  (5) 

IV. EXPERIMENTAL RESULTS 
The dual-line sensor system has been evaluated using the 

above-listed algorithms for objects passing the system at 
different velocities ranging from 1 – 22 m/s.  The four 
processing steps have been performed and the results have 
been collected. Fig. 10 and Fig. 11 illustrate the average 
absolute estimation error and the average relative 
estimation error, respectively, in function of the velocity for 
25 objects. Both figures present the experimental results 

using the three approaches: the Mean (circles), the Median 
(diamonds) and RANSAC (triangles). The Mean algorithm 
provides a relative error ranging between 1 – 6%, the 
Median has an estimation error of 0.5 – 1.3% while 
RANSAC has an error ranging between 0.4 – 1%. Thus, 
RANSAC provides better estimation of the event 
occurrence time than the Mean and the Median estimation 
as it is robust to transient phenomenon such that it selects 
the support set (line) with the largest events number. 

 
Fig. 10. Illustration of the absolute error (m/s) on the velocity estimation 

w.r.t. the velocity amplitude using the Mean, Median and RANSAC 
approaches 

 
Fig. 11. Illustration of the relative error on the velocity estimation w.r.t. the 

velocity amplitude using the Mean, Median and RANSAC approaches 
 
There are other sources of error like the optic distortion, 

the crop factor accuracy and the accuracy of the ground 
truth. A better optic quality has to be chosen to cope with 
the optic distortion and an improved calibration method has 
to be used to have an exact crop factor. Moreover, the 
ground truth velocity error was estimated to 0.1% in this 
test. By considering these sources of errors, we can assume 
that the depicted results are promising and the velocity 
estimation error can be further decreased. 

Δt 



 
 

 

V. CONCLUSION 
In this paper, an object velocity estimation concept has 

been presented for the asynchronous data from the dual-
line sensor system. This system provides sparse events 
representation with a temporal resolution better than 100 μs 
on a data stream delivered upon activity on the scene. The 
processing includes the object detection, contours 
extraction, velocity estimation and scaling steps. Three 
approaches have been evaluated for the velocity estimation, 
the Mean algorithm, the Median and a linear fit using 
RANSAC. The best estimation performance has been 
provided by the RANSAC fit with a relative error < 1%. 
However, it presents high computational complexity as it is 
50 times slower that the Mean approach by processing data 
from up to 100 object /s.  

As a perspective, the processing concept will be further 
extended to improve the velocity estimation accuracy by 
means of accurately calibrating of the optics and to 
decrease the computational complexity of RANSAC by 
means of selecting a subset of points for the linear fit.  
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