
Real-Time Vision Using a Smart Sensor System

Ahmed Nabil Belbachir, Member, IEEE, Martin Litzenberger, Christoph Posch and Peter Schön
 Austrian Research Centers GmbH - ARC, Smart Systems Division, Donau-City Str. 1, 1220 Vienna, Austria

{ahmed.belbachir, martin.litzenberger, christoph.posch, peter.schoen}@arcs.ac.at

http://www.smart-systems.at

Abstract— This paper presents a real-time data processing

concept for asynchronous “Address Event” image sensors in high-
speed machine vision applications. In the implemented system, a
dual-line temporal contrast vision sensor asynchronously
responds to relative illumination intensity changes in the visual
scene, and encodes the information in the form of “Timed
Address Event” representation (TAE) data. The TAE stream
consists of the event generation time concatenated to the Address
Event (AE), which encodes the coordinates of the pixel in the
2×256 matrix. The event data processing includes object
detection, denoising and scaling, and feature extraction. The
feature extraction step comprises circle fit and orientation
estimation techniques that enable robust recognition of a wide
range of objects. The data processing algorithms take advantage
of the efficient information encoding in the TAE data protocol,
yielding a flexible, compact and low-cost real-time machine vision
system for high-speed shape detection, object orientation
extraction and monitoring.

I. INTRODUCTION

Traditional CMOS Active Pixel Sensors (APS) or CCDs
encode image irradiance and produce constant data volume at a
fixed frame rate irrespective of the scene activity. The data
processing unit, attached to the imager, is continuously
handling the same amount of data, independent of the image
content, which represents an unnecessary load on the system
resources.

The vision sensor used in this system delivers data only upon
presence of activity in the scene as they only react on
illumination variation. These variations are usually caused by
changes in object reflectance and thus signify object
movements. Pixels that are not stimulated by an illumination
change remain idle hence static scenes do not produce output.

This image data redundancy suppression is beneficial for
high-speed machine vision applications, like for the object
inspection in the quality control area or for autonomous
processes in the automated fabrication area, as the reduced data
volume allows an extremely efficient real-time processing. The
algorithms presented in this paper are optimized to take full
advantage of this encoding of visual information.

The paper is structured as follows. In section II, a general
description of the proposed system is given. Example data
from three objects are shown in Section III. In Section IV, the
data processing concept and its modules are presented in detail.
Section V gives an evaluation of the data processing

performance and discusses potential machine vision
applications. Section VI concludes the paper with a brief
summary and some perspectives.

II. THE SMART SENSOR SYSTEM

The proposed machine vision system (see Fig.1) is inspired by
the human visual system, being a combination of retinal
sensors and massively parallel computing.

Fig. 1 A system diagram of the smart vision system

The goal is to build a simplified model of an eye-brain
machine that can automatically recognize, localize, count,
classify, and track objects in real time. The eye is analogical to
a compact optoelectronic subsystem that integrates different
sensors with geometric, radiometric and spectral parameters to
adapt to the actual scene. The brain is equivalent to a high
performance control and data handling subsystem with
computing resources for different vision applications.

The proposed vision system comprises the following
modules:

1. A “silicon retina” sensor chip [6] that contains a dual-
line arrangement of autonomous pixels which are
sensitive to local temporal contrast [5][6].

2. Auxiliary electronics for on-the-fly configuration of the
sensor chip. This allows adapting the sensor to different

Auxiliary
Electronic

Data
Formation

Data
Buffer

Data
Analysis

Dual-line pixels

FIFO

Data Processing

 Ethernet

Readout Electronic
Sensor Chip

scene conditions like varying illumination, object
reflectance and speed.

3. A FIFO to handle peak data rates.
4. A data processing unit that is responsible for treating

and interpreting the data. The processing concept is
detailed in Section IV.

TAEs are classified into two types; ON-events that represent
a fractional increase in intensity and OFF-events that reflect a
fractional decrease.

III. DATA EXAMPLES FROM THE PRESENTED VISION
SYSTEM

Fig. 2 depicts data examples from a quadrangle, a hexagon
and a ring passing across the sensor’s field-of-view with a
velocity of ca. 5 m/s at a distance of about 15 cm. Only the
edges of the moving objects, generating temporal contrast,
trigger events. The right side figures show the TAEs delivered
by one of the pixel lines of the sensor in response to the visual
stimulus. The x-axis is event generation time in units of the
timestamp period, the y-axis is the pixel address (0-255).

The time-stamps can be converted to isogonal spatial
information on the basis of the known object speed measured
by correlating the data from the two pixel lines.

The total data amount required to represent those three
objects, using one line of pixels, ranges between 400 – 650
events per object. This sparse representation of the object
shape is exploited by the data processing algorithms as
described in the following sections.

IV. REAL-TIME DATA PROCESSING

The data processing unit consists of a Digital Signal
Processor (DSP) board with a Blackfin® DSP BF537 (Analog
Devices®). It runs at a maximum frequency of 600 MHz, has
128 KB internal memory and 32 MB external SDRAM
memory.

The data processing concept is illustrated in Fig. 3. It can be
subdivided in five parts:

A. Data Interface
This module is responsible for the data acquisition from the

FIFO and their storage in the processor memory. This module
can receive data at a rate of up to 2M events / s. One TAE
contains 32 bit of data (or less if several pixel addresses share
one timestamp, i.e. more than one pixel signals during one
timestamp period).

B. Pre-processing
The processing part aims to prepare the data for the analysis

step. It includes four modules: object detection, outliers
rejection, edges thinning and data normalization.

Object Detection: This module extracts the individual
objects from the data stream by monitoring the data rate in
time slots under the assumption that the objects are
sequentially crossing the sensor field of view. An object is

detected when the event rate exceeds a first threshold
(threshold 1 is set typically to 5 events). When the event
rate falls below second threshold (threshold 2 < threshold
1), the detection algorithm assumes the end of the object.
The event rate is calculated for time slots of 1 ms. The
identified cluster of events is collected and associated to
one object.

Fig. 2 Original shapes of a quadrangle (a), hexagon (b) and a ring (c) depicted
on the left figures. The data representation of those images with the presented

vision system are, respectively, given on the right figures

This method is fast and easy to implement. It has however
the disadvantage that several objects can be considered as
one if they are too close together when moving across the
sensor field of view. A minimum time interval of 50 ms
between two successive objects guarantees robust
detection.
Outlier Rejection: This step makes use of a sigma clipping
method for removing outliers. It starts by calculating the
mean and the standard deviation (σ) for each cluster of
event. The events with large deviations relative to 3σ are

0

P
ix

el
 in

de
x

2040 2060 2080 2100

80

90

100

110

120

130

140

150

160

(a)

(b)

P
ix

el
 in

de
x

160

150

140

130

120

110

100

90

80

70
1920 1940 1960 1980 2000

(c)

Pi
xe

l i
nd

ex
220

2150 2200 2250

100

120

140

160

180

200

Time (in ms)

excluded. This method is very effective in removing
isolated events that rise from fluctuations in the scene. This
method may also remove events from the object structure,
however the significant object shape is preserved as 3σ has
proven to be an adequate threshold parameter for our data
case.

Fig. 3 Overview of the data processing concept

Edge Thinning: This module is intended for sharpening
the object edges by removing redundant events. Each pixel
can deliver one to several events per time slot and local
temporal contrast. This algorithm reduces the data to one
event per pixel and slot duration, thus only the first pixel
event is kept per slot. The time slot is adjusted according to
the prior knowledge of the object velocity.

Scaling / Normalization: The x and y coordinates of the
object shape representation do not have the same scale. The
time (x-coordinate) has a range of [0,∞] while the pixel
index range is [0,255]. Therefore, a scaling of the x-
coordinate range is required for shape-based post-
processing. The time is divided by the inverse object
velocity, measured by the sensor, in order to transform time
into isogonal spatial coordinates.

Implemented on the Blackfin-processor, the pre-processing

algorithms are able to process up to 500k events / s.

C. Features Extraction
For recognition of a given object, a set of features are

extracted to characterize the object. Two techniques are used
for extracting specific object characteristics like the dimension
and the orientation using the “circle fit” and “orientation
estimation”, respectively. These feature extraction techniques
are detailed in the following paragraphs.

Circle Fit: This module aims to fit the data points to a
circle for a minimum relative error between the original
data points and the fit data points. Equation (1) shows the
circle fit formulation where (x, y) are the data point
coordinates, (xc, yc) is the circle center coordinate and r is
the circle radius.

(x - xc)² + (y - yc)² = r². (1)

Fig. 4 Radius histogram of the shape depicted in Figure 2(c)

The barycenter of the data points is considered to be the
circle center. Then, the distance to this center is calculated
for every data point and a histogram of this distance is
built. Fig. 4 illustrates this radius (distance) histogram for
the ring shape depicted in Fig. 2 (c). The x-coordinate
represents the calculated distances for every data point
while the y-axis shows the frequency of occurrence of this
distance. It can be noticed that the distances are grouped in
two clusters, which is analogical with the ring appearance
as it contains two circles with different radii. The local
maxima in this histogram are the fit circle radii. These radii
are used as a recognition feature as described in the
‘recognition’ subsection.
The circle fit algorithm is able to process 1M events / s.

Recognition

Result
From

Outliers Rejection

Acquisition & Collection

Database

Edges Thinning

Scaling / Normalization

Pre-processing

Circle Fit

Indexation
in Database

Object
Information

Orientation
Estimation

Matching

To
Learning

Features
Extraction

Object Detection

Radius
Analysis

Data Interface

Data

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Radius

C
ou

nt
s

Radius Analysis: The information resulting from the circle
fit is used to build an additional list of features for the given
object. An analysis of the average radius distribution per
angle resolution (1 – 360) is made. Afterwards, an analysis
of this distribution is performed to extract these parameters:

1. The dispersion range of the average radius (Max –
Min).

2. The number of local maxima.
3. The distance between the local maxima in degree.

Those parameters are grouped and sent to the “Learning”
and “Recognition” sections.

Fig.5 depicts the average radius distribution for the
hexagon depicted in Fig. 2(b) versus the angle. It can be
noticed that the average radius dispersion range is ~7.
There exist six local maxima with a quasi-equivalent
distance of ~60 degree. These six maxima correspond to
the hexagon corners. There are two discontinuities in the
curve close to the second and fifth maxima, which
correspond to the missing events on the top and bottom
edges of the hexagon, respectively. This radius distribution
can be further smoothed using an average filter to improve
the dispersion regularity.
The radius analysis algorithm processes up to 80k events/s.

Fig. 5 Average radius distribution of the shape depicted in Figure 2(b) versus

the angle (15° segment)

Orientation Estimation: This module aims to estimate the
object edges orientation as an additional feature for the
recognition. The dual-line sensor provides output sorted by
pixel address which greatly reduces the computational
complexity of the orientation estimation. The orientation
estimation method performs the following steps:

1. It searches the next N-neighbors (N = 1 : 1000) within
the sorted TAE list for every event.

2. A linear fit is performed over those selected events and
the resulting slope is used to compute the local edge
orientation.

3. The event polarity is used to extract the gradient
direction that is 90° clockwise for ON Events and 90°
counter-clockwise for OFF events. Thus, the gradient
vectors point from dark to bright regions in the shape.

Fig. 6 Local orientation estimation for the quadrangle depicted in Fig.2(a)

Fig. 6 shows the local orientation estimation for the
quadrangle edges. In this case, the event polarity (OFF or
ON) is used for the estimation of the event direction. The
filled dots represent the OFF events while the circles show
the ON events. The computed gradient orientations are
displayed as vectors originating from the data points. It can
be noticed that every edge is providing a quasi-uniform
orientation vector. Using these orientation vectors, a
histogram showing the frequency of the gradient
orientations vs. the orientation angle is built. Subsequently,
a statistic over the orientation histogram is performed by
extracting the local maxima in order to estimate the global
orientation for every edge in the object.
Fig. 7 depicts the histogram of the local orientation
estimation. The four local maxima represent the orientation
of the four edges of the quadrangle.
The information (number of local maxima) from this
histogram is stored in the database as a feature for the
recognition purpose.
The orientation estimation algorithm is able to process 13k
events / s on the target processor.

Fig. 7 Histogram of events orientation (counts vs. orientation angle)

D. The Learning
The aim of this step is to memorize the object and its

features in the database. This task receives the object
information (name) from the user interface and allocates an ID
for it. Then, it assigns to the object ID the set of features that
were collected in the previous steps – Fit circle’ radius and

Angle (degree)

R
ad

iu
s

0 50 100 150 200 250 300 350
35

40

45

50

2020 2040 2060 2080 2100 2120

80

90

100

110

120

130

140

150

160

Time

Pi
xe

l i
nd

ex

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
0

5

10

15

20

Angle (degree)

C
ou

nt
s

radius statistics as well as the orientation statistics – and
includes them to the database. This step is called the indexation
of the object. The information stored in the database is used as
a prior knowledge for the recognition.

E. The Recognition
This is the targeted vision task that aims to identify the

captured object. This module receives the features from the
previous step and matches them to one of the objects stored in
the database. The matching consists of comparative steps
between the extracted and stored features. The following
parameters are tested:

1. First, the normalized object length is checked. The length
(in μs) represents the time required for an object to
traverse a line of pixels. It is scaled by a ΔT factor (ΔT is
the time needed for the object to pass from the 1st line to
the 2nd line of pixels) to obtain a normalized length,
independently from the object velocity.

2. Afterwards, the radius error resulting from the circle fit of
the actual object is checked to be below 8%. If this
parameter matches, then the object has a near-to-circle
shape form.

3. It compares the fit circle radius of the actual object to the
stored radius within a given deviation ‘Δ’ (Δ is set to
20%). If the parameters match, then step 4 will be
performed otherwise the object is set as ‘non-identified’.

4. In this step, the number of local maxima is compared for
a deviation under 10%. If the number matches one of the
stored objects, then, this one will be assigned to the
current observed pattern. Otherwise, the distance between
the local maxima will be used as a parameter to extract a
matching object. In both cases, the recognition procedure
stops after a success in finding an object matching the
current pattern.

5. The recognition procedure can be pursued if step 4 does
not identify the current pattern. In this step, the dispersion
range of the radius and the orientation histogram are
compared for the actual pattern and the stored object. If
both parameters match for a deviation of 20%, then the
candidate object is assigned to the actual pattern
otherwise, the object is set to ‘non-identified’.

Thus, the recognition procedure will be identifying the
actual object whenever the targeted object is present in the
database and the parameters are robustly extracted. Otherwise,
the learning process has to be run in order to include the actual
pattern in the object database. The algorithmic complexity of
the recognition step includes the feature extraction complexity
and the database access duration. In Section V, the algorithmic
complexity for the recognition of test objects is given.

F. The Database
This is a memory region containing a listing of objects and

their features that is built up by the learning process. This

database is updated by the learning step for every new target. It
is used by the recognition process for the object identification.

A typical exploitation of this vision system for machine
applications consists of starting the system by learning its
environment and indexing the dedicated objects in the
database. Afterwards, the system can be run for the recognition
of the prior learnt objects.

V. EVALUATION OF THE PROPOSED CONCEPT

The proposed vision system has the advantage of providing a
sparse object representation, which consists of timed address-
events. The events are typically located on the object contours
facilitating the shape recognition. The processing concept
includes a pre-processing step for the data preparation, feature
extraction techniques for parameters generation and a decision-
making process for object memorization or identification. This
vision concept is efficient and easy to implement and the object
recognition is computationally fast. This concept has been
successfully evaluated using objects with regular shapes.

Fig.8 depicts four shapes (ball, screw nut, cube and cuboid)
for testing this recognition concept. A resulting 3D features
space is shown in Fig. 9 from using the test shapes 1000 times
at different velocity. In this case, the used features are the fit
circle radius, the radius error and the normalized object length.

Fig. 8 Original shapes of test-objects (from left to right: ball, screw nut, cube

and cuboid)

Fig. 9 The resulting features distribution in 3D space from the test-objects
using the radius, the radius error and the normalized object length

Fig. 10 Illustration of the resulting features distribution in 2D space using the
normalized object length vs. the radius error (Top), the radius vs. the radius

error (middle) and the radius vs. the normalized object length (bottom)

For a better visibility of the features distribution, Fig.9 is
split into 3 subfigures (Fig.10), each depicting the dependency
between two parameters. In Fig.10 (top), it can be noticed that
the cuboid can be fully distinguished using the normalized
object length as it builds an independent cluster. The screw nut
builds two clusters of features representing the inner and outer
contours. Besides one outlier, the screw nut can be discerned
using the object length and the outlier can be isolated using the
radius error. A major part of the radius error distribution from
the ball lies under 8%. The radius parameter (Fig.10 bottom)
can be used to fully separate between the ball and the cube.

In this example, the circle fit and the object length
calculation seem to be sufficient to distinguish between the
four test objects. Both techniques are computationally efficient
as they are using a closed form and thus, the complexity is
proportional to the number of AE. For these test examples, the
features extraction and recognition steps require less than

1ms/object. One major contribution in the processing time is
the object detection, which may take many ms, depending on
the object velocity, as the object has to fully traverse both lines
of pixels before the processing starts. In other words, a simple,
low-cost DSP can process more than 35 objects per second for
shapes that produce 500 events in average with less than 30ms
travel time across the sensor field of view. The recognition step
is robust for object shapes that are close to a circle e.g. ball,
cube, pentagon, hexagon… etc. The method can be extended
to other shapes by adapting the fitting method to these shapes.

Many applications can exploit the advantage of this system
in monitoring high-speed objects for surface vision (defect
recognition, remote diagnosis…), quality vision (presence
inspection, contour inspection, position inspection…) and for
automated fabrication processes (sorting, classification…).

VI. CONCLUSIONS

In this paper, a real-time data processing concept for
asynchronous “Address Event” image sensors in high-speed
machine vision applications has been presented. The
processing steps include data denoising and normalization,
features extraction and indexation or recognition of objects.
Using a circle fit and orientation estimation, the features
extraction has proven to allow the recognition of objects with
regular shapes (like Geon e.g. ball, cube, hexagon…etc).
Furthermore, those methods are computationally efficient as
the complexity is linearly proportional to the number of events.

This processing concept can be extended to other shapes by
considering other models fitting for the features extraction.

REFERENCES
[1] D.H. Ballard and C.M. Brown, “Computer Vision,” Prentice-Hall Inc.

Englewood Cliffs, New Jersey, 1982
[2] W.-C. Fang, “A System on-Chip Design of a Low-Power Smart Vision

System,” IEEE Workshop on SIPS 98, Cambridge, pp.63-72, USA, 1998
[3] M. Hoffstaetter, A.N. Belbachir, E. Bodenstorfer and P. Schoen,

“Multiple Input Digital Arbiter with Timestamp Assignment for
Asynchronous Sensor Arrays,” IEEE ICECS06, Nice, France, 2006

[4] T. Komuro, I. Ishii, M. Ishikawa and A. Yoshida, “A Digital Vision Chip
Specialized for High-speed Target Tracking,” in IEEE Transactions on
Electron Devices, vol.50, pp.191-199, 2003

[5] Lichtsteiner, P.; Posch, C.; Delbruck, T., "A 100dB dynamic range high-
speed dual-line optical transient sensor with asynchronous readout," in
the Proceedings of ISCAS 2006, pp 1659- 1662 , May 21-24, 2006

[6] Lichtsteiner, P.; Posch, C.; Delbruck, T., "A 128×128 120db 30mW
asynchronous vision sensor that responds to relative intensity change,"
Solid-State Circuits, 2006 IEEE International Conference ISSCC, Digest
of Technical Papers , pp. 2060- 2069, Feb. 6-9, 2006.

[7] C. Posch, M. Hofstätter, D. Matolin, G. Vanstraelen, P. Schoen, N.
Donath and M. Litzenberger, “A Dual-Line Optical Transient Sensor
with On-chip Precision Timestamp Generation,” IEEE International
Conference ISSCC, Digest of Technical Papers , pp., Feb. 11-15, 2007

[8] O. Schrey, J. Huppertz, G. Filimonovic, A. Bussmann, W. Brockherde
and B.J. Hosticka, “A 1 K×1 K High Dynamic Range CMOS Image
Sensor with On-chip Programmable Region-of-Interest Readout,” in
IEEE Journal of Solid-State Circuits, vol.37, pp.911-915, 2002

[9] G.P. Stein, E. Rushinek, G. Hayun and A. Shashua, “A Computer Vision
System on a Chip: a Case Study from the Automotive Domain,” IEEE
Conference for CVPR, vol.3, pp.130-134, 2005.

