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Abstract— This paper presents a real-time data processing 

concept for asynchronous “Address Event” image sensors in high-
speed machine vision applications. In the implemented system, a 
dual-line temporal contrast vision sensor asynchronously 
responds to relative illumination intensity changes in the visual 
scene, and encodes the information in the form of “Timed 
Address Event” representation (TAE) data. The TAE stream 
consists of the event generation time concatenated to the Address 
Event (AE), which encodes the coordinates of the pixel in the 
2×256 matrix. The event data processing includes object 
detection, denoising and scaling, and feature extraction. The 
feature extraction step comprises circle fit and orientation 
estimation techniques that enable robust recognition of a wide 
range of objects. The data processing algorithms take advantage 
of the efficient information encoding in the TAE data protocol, 
yielding a flexible, compact and low-cost real-time machine vision 
system for high-speed shape detection, object orientation 
extraction and monitoring. 

I. INTRODUCTION 

Traditional CMOS Active Pixel Sensors (APS) or CCDs 
encode image irradiance and produce constant data volume at a 
fixed frame rate irrespective of the scene activity. The data 
processing unit, attached to the imager, is continuously 
handling the same amount of data, independent of the image 
content, which represents an unnecessary load on the system 
resources. 

The vision sensor used in this system delivers data only upon 
presence of activity in the scene as they only react on 
illumination variation. These variations are usually caused by 
changes in object reflectance and thus signify object 
movements. Pixels that are not stimulated by an illumination 
change remain idle hence static scenes do not produce output.  

This image data redundancy suppression is beneficial for 
high-speed machine vision applications, like for the object 
inspection in the quality control area or for autonomous 
processes in the automated fabrication area, as the reduced data 
volume allows an extremely efficient real-time processing. The 
algorithms presented in this paper are optimized to take full 
advantage of this encoding of visual information. 

The paper is structured as follows. In section II, a general 
description of the proposed system is given. Example data 
from three objects are shown in Section III. In Section IV, the 
data processing concept and its modules are presented in detail. 
Section V gives an evaluation of the data processing 

performance and discusses potential machine vision 
applications. Section VI concludes the paper with a brief 
summary and some perspectives.  

II. THE SMART SENSOR SYSTEM  

The proposed machine vision system (see Fig.1) is inspired by 
the human visual system, being a combination of retinal 
sensors and massively parallel computing. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 A system diagram of the smart vision system 
 
The goal is to build a simplified model of an eye-brain 
machine that can automatically recognize, localize, count, 
classify, and track objects in real time. The eye is analogical to 
a compact optoelectronic subsystem that integrates different 
sensors with geometric, radiometric and spectral parameters to 
adapt to the actual scene. The brain is equivalent to a high 
performance control and data handling subsystem with 
computing resources for different vision applications. 

The proposed vision system comprises the following 
modules: 

1. A “silicon retina” sensor chip [6] that contains a dual-
line arrangement of autonomous pixels which are 
sensitive to local temporal contrast [5][6]. 

2. Auxiliary electronics for on-the-fly configuration of the 
sensor chip. This allows adapting the sensor to different 
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scene conditions like varying illumination, object 
reflectance and speed. 

3. A FIFO to handle peak data rates.  
4. A data processing unit that is responsible for treating 

and interpreting the data. The processing concept is 
detailed in Section IV.  

TAEs are classified into two types; ON-events that represent 
a fractional increase in intensity and OFF-events that reflect a 
fractional decrease.  

III. DATA EXAMPLES FROM THE PRESENTED VISION 
SYSTEM 

Fig. 2 depicts data examples from a quadrangle, a hexagon 
and a ring passing across the sensor’s field-of-view with a 
velocity of ca. 5 m/s at a distance of about 15 cm. Only the 
edges of the moving objects, generating temporal contrast, 
trigger events. The right side figures show the TAEs delivered 
by one of the pixel lines of the sensor in response to the visual 
stimulus. The x-axis is event generation time in units of the 
timestamp period, the y-axis is the pixel address (0-255).  

The time-stamps can be converted to isogonal spatial 
information on the basis of the known object speed measured 
by correlating the data from the two pixel lines.  

The total data amount required to represent those three 
objects, using one line of pixels, ranges between 400 – 650 
events per object. This sparse representation of the object 
shape is exploited by the data processing algorithms as 
described in the following sections. 

IV. REAL-TIME DATA PROCESSING 

The data processing unit consists of a Digital Signal 
Processor (DSP) board with a Blackfin® DSP BF537 (Analog 
Devices®). It runs at a maximum frequency of 600 MHz, has 
128 KB internal memory and 32 MB external SDRAM 
memory. 

The data processing concept is illustrated in Fig. 3. It can be 
subdivided in five parts: 

A. Data Interface 
This module is responsible for the data acquisition from the 

FIFO and their storage in the processor memory. This module 
can receive data at a rate of up to 2M events / s. One TAE 
contains 32 bit of data (or less if several pixel addresses share 
one timestamp, i.e. more than one pixel signals during one 
timestamp period). 

B. Pre-processing 
The processing part aims to prepare the data for the analysis 

step. It includes four modules: object detection, outliers 
rejection, edges thinning and data normalization. 

Object Detection: This module extracts the individual 
objects from the data stream by monitoring the data rate in 
time slots under the assumption that the objects are 
sequentially crossing the sensor field of view. An object is 

detected when the event rate exceeds a first threshold 
(threshold 1 is set typically to 5 events). When the event 
rate falls below second threshold (threshold 2 < threshold 
1), the detection algorithm assumes the end of the object. 
The event rate is calculated for time slots of 1 ms. The 
identified cluster of events is collected and associated to 
one object.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Original shapes of a quadrangle (a), hexagon (b) and a ring (c) depicted 
on the left figures. The data representation of those images with the presented 

vision system are, respectively, given on the right figures 

This method is fast and easy to implement. It has however 
the disadvantage that several objects can be considered as 
one if they are too close together when moving across the 
sensor field of view. A minimum time interval of 50 ms 
between two successive objects guarantees robust 
detection. 
Outlier Rejection: This step makes use of a sigma clipping 
method for removing outliers. It starts by calculating the 
mean and the standard deviation (σ) for each cluster of 
event. The events with large deviations relative to 3σ are 
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excluded. This method is very effective in removing 
isolated events that rise from fluctuations in the scene. This 
method may also remove events from the object structure, 
however the significant object shape is preserved as 3σ has 
proven to be an adequate threshold parameter for our data 
case. 
 
 

 
Fig. 3 Overview of the data processing concept 

Edge Thinning: This module is intended for sharpening 
the object edges by removing redundant events. Each pixel 
can deliver one to several events per time slot and local 
temporal contrast. This algorithm reduces the data to one 
event per pixel and slot duration, thus only the first pixel 
event is kept per slot. The time slot is adjusted according to 
the prior knowledge of the object velocity. 

Scaling / Normalization: The x and y coordinates of the 
object shape representation do not have the same scale. The 
time (x-coordinate) has a range of [0,∞] while the pixel 
index range is [0,255]. Therefore, a scaling of the x-
coordinate range is required for shape-based post-
processing. The time is divided by the inverse object 
velocity, measured by the sensor, in order to transform time 
into isogonal spatial coordinates. 

 
Implemented on the Blackfin-processor, the pre-processing 

algorithms are able to process up to 500k events / s. 

C. Features Extraction 
For recognition of a given object, a set of features are 

extracted to characterize the object. Two techniques are used 
for extracting specific object characteristics like the dimension 
and the orientation using the “circle fit” and “orientation 
estimation”, respectively. These feature extraction techniques 
are detailed in the following paragraphs. 

 
Circle Fit: This module aims to fit the data points to a 
circle for a minimum relative error between the original 
data points and the fit data points. Equation (1) shows the 
circle fit formulation where (x, y) are the data point 
coordinates, (xc, yc) is the circle center coordinate and r is 
the circle radius. 

(x - xc)² + (y - yc)² = r². (1) 

Fig. 4 Radius histogram of the shape depicted in Figure 2(c) 

The barycenter of the data points is considered to be the 
circle center. Then, the distance to this center is calculated 
for every data point and a histogram of this distance is 
built. Fig. 4 illustrates this radius (distance) histogram for 
the ring shape depicted in Fig. 2 (c). The x-coordinate 
represents the calculated distances for every data point 
while the y-axis shows the frequency of occurrence of this 
distance. It can be noticed that the distances are grouped in 
two clusters, which is analogical with the ring appearance 
as it contains two circles with different radii. The local 
maxima in this histogram are the fit circle radii. These radii 
are used as a recognition feature as described in the 
‘recognition’ subsection. 
The circle fit algorithm is able to process 1M events / s. 
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Radius Analysis: The information resulting from the circle 
fit is used to build an additional list of features for the given 
object. An analysis of the average radius distribution per 
angle resolution (1 – 360) is made. Afterwards, an analysis 
of this distribution is performed to extract these parameters: 

1. The dispersion range of the average radius (Max – 
Min). 

2. The number of local maxima.  
3. The distance between the local maxima in degree. 

Those parameters are grouped and sent to the “Learning” 
and “Recognition” sections.  

Fig.5 depicts the average radius distribution for the 
hexagon depicted in Fig. 2(b) versus the angle. It can be 
noticed that the average radius dispersion range is ~7. 
There exist six local maxima with a quasi-equivalent 
distance of ~60 degree. These six maxima correspond to 
the hexagon corners. There are two discontinuities in the 
curve close to the second and fifth maxima, which 
correspond to the missing events on the top and bottom 
edges of the hexagon, respectively. This radius distribution 
can be further smoothed using an average filter to improve 
the dispersion regularity.  
The radius analysis algorithm processes up to 80k events/s. 
 
 
 
 

 
 
 
 
 

 
Fig. 5 Average radius distribution of the shape depicted in Figure 2(b) versus 

the angle (15° segment) 

 
Orientation Estimation: This module aims to estimate the 
object edges orientation as an additional feature for the 
recognition. The dual-line sensor provides output sorted by 
pixel address which greatly reduces the computational 
complexity of the orientation estimation. The orientation 
estimation method performs the following steps: 

1. It searches the next N-neighbors (N =  1 : 1000) within 
the sorted TAE list for every event. 

2. A linear fit is performed over those selected events and 
the resulting slope is used to compute the local edge 
orientation. 

3. The event polarity is used to extract the gradient 
direction that is 90° clockwise for ON Events and 90° 
counter-clockwise for OFF events. Thus, the gradient 
vectors point from dark to bright regions in the shape. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Local orientation estimation for the quadrangle depicted in Fig.2(a) 

Fig. 6 shows the local orientation estimation for the 
quadrangle edges. In this case, the event polarity (OFF or 
ON) is used for the estimation of the event direction. The 
filled dots represent the OFF events while the circles show 
the ON events. The computed gradient orientations are 
displayed as vectors originating from the data points. It can 
be noticed that every edge is providing a quasi-uniform 
orientation vector. Using these orientation vectors, a 
histogram showing the frequency of the gradient 
orientations vs. the orientation angle is built. Subsequently, 
a statistic over the orientation histogram is performed by 
extracting the local maxima in order to estimate the global 
orientation for every edge in the object.  
Fig. 7 depicts the histogram of the local orientation 
estimation. The four local maxima represent the orientation 
of the four edges of the quadrangle. 
The information (number of local maxima) from this 
histogram is stored in the database as a feature for the 
recognition purpose. 
The orientation estimation algorithm is able to process 13k 
events / s on the target processor. 
 

 
 

Fig. 7 Histogram of events orientation (counts vs. orientation angle) 

D. The Learning 
The aim of this step is to memorize the object and its 

features in the database. This task receives the object 
information (name) from the user interface and allocates an ID 
for it. Then, it assigns to the object ID the set of features that 
were collected in the previous steps – Fit circle’ radius and 
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radius statistics as well as the orientation statistics – and 
includes them to the database. This step is called the indexation 
of the object. The information stored in the database is used as 
a prior knowledge for the recognition.   

E. The Recognition 
This is the targeted vision task that aims to identify the 

captured object. This module receives the features from the 
previous step and matches them to one of the objects stored in 
the database. The matching consists of comparative steps 
between the extracted and stored features. The following 
parameters are tested:  

1. First, the normalized object length is checked. The length 
(in μs) represents the time required for an object to 
traverse a line of pixels. It is scaled by a ΔT factor (ΔT is 
the time needed for the object to pass from the 1st line to 
the 2nd line of pixels) to obtain a normalized length, 
independently from the object velocity. 

2. Afterwards, the radius error resulting from the circle fit of 
the actual object is checked to be below 8%. If this 
parameter matches, then the object has a near-to-circle 
shape form. 

3. It compares the fit circle radius of the actual object to the 
stored radius within a given deviation ‘Δ’ (Δ is set to 
20%). If the parameters match, then step 4 will be 
performed otherwise the object is set as ‘non-identified’. 

4. In this step, the number of local maxima is compared for 
a deviation under 10%. If the number matches one of the 
stored objects, then, this one will be assigned to the 
current observed pattern. Otherwise, the distance between 
the local maxima will be used as a parameter to extract a 
matching object. In both cases, the recognition procedure 
stops after a success in finding an object matching the 
current pattern. 

5. The recognition procedure can be pursued if step 4 does 
not identify the current pattern. In this step, the dispersion 
range of the radius and the orientation histogram are 
compared for the actual pattern and the stored object. If 
both parameters match for a deviation of 20%, then the 
candidate object is assigned to the actual pattern 
otherwise, the object is set to ‘non-identified’. 

Thus, the recognition procedure will be identifying the 
actual object whenever the targeted object is present in the 
database and the parameters are robustly extracted. Otherwise, 
the learning process has to be run in order to include the actual 
pattern in the object database. The algorithmic complexity of 
the recognition step includes the feature extraction complexity 
and the database access duration. In Section V, the algorithmic 
complexity for the recognition of test objects is given. 

  

F. The Database 
This is a memory region containing a listing of objects and 

their features that is built up by the learning process. This 

database is updated by the learning step for every new target. It 
is used by the recognition process for the object identification. 

A typical exploitation of this vision system for machine 
applications consists of starting the system by learning its 
environment and indexing the dedicated objects in the 
database. Afterwards, the system can be run for the recognition 
of the prior learnt objects.  

V. EVALUATION OF THE PROPOSED CONCEPT  

The proposed vision system has the advantage of providing a 
sparse object representation, which consists of timed address-
events. The events are typically located on the object contours 
facilitating the shape recognition. The processing concept 
includes a pre-processing step for the data preparation, feature 
extraction techniques for parameters generation and a decision-
making process for object memorization or identification. This 
vision concept is efficient and easy to implement and the object 
recognition is computationally fast. This concept has been 
successfully evaluated using objects with regular shapes.  

Fig.8 depicts four shapes (ball, screw nut, cube and cuboid) 
for testing this recognition concept. A resulting 3D features 
space is shown in Fig. 9 from using the test shapes 1000 times 
at different velocity. In this case, the used features are the fit 
circle radius, the radius error and the normalized object length. 

 

 

 

 

 
Fig. 8 Original shapes of test-objects (from left to right: ball, screw nut, cube 

and cuboid) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 The resulting features distribution in 3D space from the test-objects 
using the radius, the radius error and the normalized object length 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 10 Illustration of the resulting features distribution in 2D space using the 
normalized object length vs. the radius error (Top), the radius vs. the radius 

error (middle) and the radius vs. the normalized object length (bottom) 

For a better visibility of the features distribution, Fig.9 is 
split into 3 subfigures (Fig.10), each depicting the dependency 
between two parameters. In Fig.10 (top), it can be noticed that 
the cuboid can be fully distinguished using the normalized 
object length as it builds an independent cluster. The screw nut 
builds two clusters of features representing the inner and outer 
contours. Besides one outlier, the screw nut can be discerned 
using the object length and the outlier can be isolated using the 
radius error.  A major part of the radius error distribution from 
the ball lies under 8%. The radius parameter (Fig.10 bottom) 
can be used to fully separate between the ball and the cube.  

In this example, the circle fit and the object length 
calculation seem to be sufficient to distinguish between the 
four test objects. Both techniques are computationally efficient 
as they are using a closed form and thus, the complexity is 
proportional to the number of AE. For these test examples, the 
features extraction and recognition steps require less than 

1ms/object. One major contribution in the processing time is 
the object detection, which may take many ms, depending on 
the object velocity, as the object has to fully traverse both lines 
of pixels before the processing starts. In other words, a simple, 
low-cost DSP can process more than 35 objects per second for 
shapes that produce 500 events in average with less than 30ms 
travel time across the sensor field of view. The recognition step 
is robust for object shapes that are close to a circle e.g. ball, 
cube, pentagon, hexagon… etc.  The method can be extended 
to other shapes by adapting the fitting method to these shapes. 

Many applications can exploit the advantage of this system 
in monitoring high-speed objects for surface vision (defect 
recognition, remote diagnosis…), quality vision (presence 
inspection, contour inspection, position inspection…) and for 
automated fabrication processes (sorting, classification…). 

VI. CONCLUSIONS 

In this paper, a real-time data processing concept for 
asynchronous “Address Event” image sensors in high-speed 
machine vision applications has been presented. The 
processing steps include data denoising and normalization, 
features extraction and indexation or recognition of objects. 
Using a circle fit and orientation estimation, the features 
extraction has proven to allow the recognition of objects with 
regular shapes (like Geon e.g. ball, cube, hexagon…etc). 
Furthermore, those methods are computationally efficient as 
the complexity is linearly proportional to the number of events.  

This processing concept can be extended to other shapes by 
considering other models fitting for the features extraction.  
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