
 
 

 

  

Abstract—In this paper a sensor system for traffic data 
acquisition is presented. The embedded system, comprising a 
motion-sensitive optical sensor and a low-cost, low-power DSP, 
is capable of detecting, counting and measuring the velocity of 
passing vehicles. The detection is based on monitoring of the 
optical sensor output within configurable regions of interest in 
the sensor’s field-of-view. In particular in this work we focus 
on the evaluation of the applied vehicle counting algorithm. 
The verification of the acquired data is based on manually 
annotated traffic data of 360 minutes length, containing a total 
of about 7000 vehicles. The counting error is determined for 
short (3 minutes) and long (60 minutes) time intervals. The 
calculated error of 99,2% of the short time intervals and 100% 
of the long time intervals analyzed, remain within commonly 
recognized margins of 10% and 3% of detection error 
respectively.   

I. INTRODUCTION 
Ever increasing traffic volume has driven various efforts 

of applying known technologies to the development of novel 
traffic monitoring systems [7, 8, 9, 10]. These technologies 
comprise pavement invasive sensors like induction loops 
and non-invasive sensors like ultra-sound, infrared, 
microwave-radar or video based systems [1]. The main task 
of these detectors is to provide fairly accurate measurements 
of vehicle speeds and traffic volumes, in order to optimize 
the traffic flow.   

Radar and ultra-sound systems have the advantage to be 
nearly independent of weather conditions and ambient light; 
however they are subject to stringent restrictions concerning 
their mounting position. Furthermore each of these systems 
can service one lane only. In contrast, video systems can be 
mounted at a side view position and a single sensor is able to 
monitor several lanes simultaneously. The main 
disadvantages of video based systems are the huge digital 
processing power [2, 3] needed to extract the essential 
information from the video image data and the sensitivity to 
inevitably varying lighting conditions.  

The traffic monitoring system presented here uses a novel 
asynchronous optical transient sensor [4]. Applied in the 
context of traffic data acquisition, the sensor features almost 
all advantages of video-based systems without exhibiting the 
above mentioned drawbacks. By performing focal-plane 
analog signal preprocessing, a substantial data rate reduction 
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is achieved, as compared to traditional frame-based image 
sensors, by completely suppressing redundant information in 
the image data. Consequently the subsequent digital signal 
processing can be accomplished by a low-performance, low-
cost DSP. Additionally, the sensor exhibits a dynamic range 
of 6 decades of illumination, hence is largely insensitive to 
lighting conditions.  

The presented system is capable of detecting, counting 
and measuring the speed of vehicles on up to 4 lanes 
simultaneously.  

This paper concentrates on the evaluation of the vehicle 
counting algorithm implemented in the embedded system. 
For this purpose, the counting results delivered by the 
system are compared to ground-truth data extracted from the 
corresponding video stream by human interaction.  

A comprehensive treatise on speed estimation algorithms 
employed in similar systems can be found in [5].   

II. EMBEDDED SYSTEM AND TEST SITE 

A. Sensor System 
The embedded sensor system consists of the optical 

sensor and a DSP with Ethernet connectivity. 
The sensor comprises 64×64 pixel performing  

on-chip detection and extraction of moving edges. Each of 
the autonomously operating pixels signals temporal contrast 
by generating asynchronous ‘address events’ (AEs). An 
address event consists of the signaling pixels’ address, 
polarity (i.e. sign of change from bright to dark or dark to 
bright) and the time of event generation and thus is a most 
concise description of the dynamic contents of a scene. 
While the pixel reacts to illumination changes within 
microseconds, the DSP allocates time-stamps to the events 
with one millisecond time resolution, which is sufficient for 
vehicle detection and speed computation [4, 5]. 

For signal processing, a simple low-cost and low-power 
fixed-point DSP (Analog Devices Blackfin®) is used. The 
incoming address event stream is processed to detect 
vehicles and determine a series of vehicle properties (speed, 
length, time gap, vehicle class). The results are transmitted 
over Ethernet to a data receiver for post-processing or 
storage. More details about the sensor and the setup of the 
embedded system can be found in [4, 5]. 

B. Test installation 
For nearly two years, we have been working with the 

local highway authority in operating a series of test sites 
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allowing us to evaluate our traffic data systems in long-term 
field tests. All test sites feature uninterrupted power supply 
and broad-band network connectivity, thus allowing 
permanent access to the systems.  

In this paper we show data from one of the sites where 
vehicles are viewed from the front (i.e. vehicles are 
approaching the sensor). At this location the highway has 
four lanes per traffic flow direction and features a wide 
speed  range (stand-still congestion up to 180 km/h 
measured during night time) and very high traffic volume at 
rush hours (up to 1800 vehicles/hour/lane).  

C. Detection and Counting Algorithm  
Vehicle detection is based on monitoring the address 

event rate in predefined regions-of-interest (ROI). The AE 
rate is accumulated over 100 milliseconds and continuously 
compared against a threshold. If the threshold is exceeded, 
vehicle detection is assumed and address events from the 
respective lane are recorded. At the time the address-event 
rate under-runs the threshold the vehicle is assumed to have 
passed, data buffering is stopped and different algorithms 
processing the acquired data are started. Figure 1 shows the 
address event rate over time from a single ROI where five 
vehicles are passing. The detection threshold is marked as a 
red line. Every peak that exceeds and subsequently under-
runs the threshold is regarded as one vehicle. 

 

 
Figure 1: Detecting vehicles based on address event rate in region-of-

interest. Start and stop time of vehicles are determined by using a simple 
threshold. 

 
This simple method is robust with regard to missing 

vehicles but tends to detect false positives: 

• Tall vehicles overlap neighboring lanes due to 
geometry/perspective.  

• Front and back sections of one vehicle may be detected 
as independent vehicles. 

• Shadows are cast by large vehicles on neighboring 
lanes, leading to erroneous double counts. 

 

These false positives are removed in a second step by 
processing the buffered AE data. 

Imposing a minimum number of address-events per 
detected vehicle suppresses double counts from overlaps, 
which generally show a much lower event count.  

Front and back boundaries of vehicles are always easily 
detectable, independent of the vehicle’s color and contrast to 
the road surface. The detection of leading and trailing edges 
is eased by prominent features like bumpers and head-/tail-
lights, etc. and the always present ground shadows. 
However, the featureless middle section of certain vehicles 
causes a distinct minimum in the instantaneous AE rate 
which leads to unintended double detection. An imposed 
minimum distance between two consecutive detections, 
depending on the viewing angle and typical vehicle length, 
reduces those false counts. 

To cope with the third shortcoming, a shadow 
cancellation algorithm was implemented. Upon vehicle 
detection, an AE histogram is accumulated, summing up 
AEs over the full sensor width at the region-of-interest’s 
length. The histogram is filled until activity in the ROI 
under-runs the threshold. Shadow cancellation is based on 
the evaluation of the histogram’s shape. Figure 2(a) shows a 
video frame and a histogram of two vehicles driving side by 
side on two lanes. They generate two distinguishable peaks 
on their respective lanes, separated by a clear local 
minimum. In contrast, a vehicle, when casting a shadow on a 
neighboring lane, generates only one local maximum in the 
histogram. A shadow appears as a shoulder without a local 
minimum (Figure 2(b)). The reason for this behavior is ….. 

D. Additional Derived Traffic Parameters 
Other parameters important for traffic statistics such as 

the vehicle time gap and the lane occupancy are derived 
from begin and end of the vehicle detection (exceeding and 
under-run of detection threshold).  

The time gap between vehicles is calculated and stored 
from the detection end to the start of the consecutive vehicle 
detection for each single vehicle with a resolution of one 
millisecond. Average time gaps for one minute intervals are 
derived for each lane. 

The lane occupancy is the percentage of the time a ROI 
was occupied by a vehicle detection during a fixed time 
interval. It is calculated from the sum of the vehicle time 
gaps TΣgaps observed in this observation interval as  
(1 – TΣgaps/Tinterval ). 

 Vehicle speed is derived from buffered AE data using 
two independent speed estimation algorithms reported in [5] 
and [12]. 

E. Test data recording 
The AE data stream of about three hours of traffic data was 
recorded at a timing resolution of 1 millisecond by the 
embedded system. In parallel, a 5 frames-ps video stream  
 



 
 

 

was recorded by a webcam at a resolution of 320×200 pixel 
and synchronized to the AE data using the AE inherent time 
stamps. Figure 3 shows raw address event data and the 
corresponding video frame of a scene recorded at the test 
site.  

  
Figure 3: Video frame and rendering of AE data  

The recording times for the test data sequences were 
chosen to contain a representative mix of different vehicle’s 
speeds, traffic volume and lane occupancy. In case of bright 
sunshine where shadow cancellation is required shadows 
vary greatly depending on time of day and therefore test 
sequences have been recorded at different times (e.g. one 
sequence in the morning and one in the afternoon). 

Table 1: Test data sequences 

Time 
of day 

Length 
min:sec 

Average 
veh./hour/lane 

Light conditions 

06:42 33:22 1291 overcast 
09:30 30:13 1018 overcast, rainy 
09:42 26:44 956 sunny 
10:43 30:36 836 overcast 
10:52 27:24 904 heavy rain 
11:30 20:52 776 overcast 
15:08 19:39 720 sunny 
total 188:50   
 
By human inspection, timestamp, lane and vehicle type 

were determined and linked to the raw address-event data 
stream. Three hours worth of video stream containing 
several thousands vehicles were processed and analyzed this 
way.  

Table 1 contains a list of the recorded and annotated test 
sequences. 

 
 
 

  

(a)                         (b) 
Figure 2 Video frames of the test data and corresponding address event histograms 



 
 

 

III. RESULTS AND DISCUSSION 

A. Vehicle Counting 
Figure 4 shows a typical result of the vehicle counting 

accumulated over all four lanes over the course of four days. 
The data is shown in 2 minutes resolution, scaled to one 
hour intervals. As city inbound traffic flow is monitored, 
traffic peaks on weekdays at around 7am. On Saturday there 
is no pronounced peak whereas a traffic peak is found in the 
evening hours caused by people returning from weekend 
vacation. 
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Figure 4: Vehicle quantity traffic data acquisition results accumulated 

over four lanes given in 2 minutes time intervals.  
 
Figure 5 shows a typical result for the average lane 

occupancy evolution for the same days as presented in 
Figure 4. The data is resolved for the single lanes with lane 
number 1 being the right (slow) lane and lane number 4 
being the left (fast) lane. Lane occupancy is basically 
following the traffic volume development. The strongest 
modulation of the lane occupancy is found on lane four 
which is used frequently only during peak times. Heavy 
usage of lane 1 on weekday mornings indicate frequent 
truck traffic in this time, whereas peaks on lane 3 and 4 on 
Sunday evening indicate the traffic generated by (fast) 
passenger cars. 

B. Evaluation of Counting Precision 
For the evaluation of the traffic data acquisition precision, 

in accordance with “Technische Lieferbedingungen für 
Streckenstationen (TLS)” [13], the official German norm for 
traffic data acquisition equipment suppliers, the data were 
evaluated over “short” and “long” time intervals and the 
total vehicle quantity per lane and interval were compared 
against a reliable reference quantity Q. The difference ∆Q 
between reference and system under test is then related to 
the vehicle quantity to define the counting error ∆Q/Q in 
percent.  

Whereas errors in the long time interval should be very 
low, errors in the short time interval are inevitable due to 
small sample size and imperfect synchronization of test and 
reference system. Due to the small sample size in the short 
time interval (typically 10 to 100 vehicles), a single false 
detection can easily account for errors of the order of several 
percent. Also, for short intervals the probability increases 
that the test system attributes the detection to one interval 
and the reference system to another one. Thus, one such 
synchronization error accounts for two errors (one missing 
vehicle in one interval and one false detection in another).  

Thresholds 3% and 10% are, according to [13], acceptable 
error margins for long (60 min) and short (3 min) time 
intervals respectively.  

Our analysis was based on results from two lanes within 6 
intervals of 60 minutes and 122 intervals of 3 minutes each. 
Table 2 gives an overview of the test data and counting 
precision. 100% of the long and 99.2% of the short time 
intervals analyzed remain within the error margins. 
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Figure 5: Lane occupancy traffic data acquisition results. 

 
 
 
 
 
 



 
 

 

Table 2: Results of vehicle counting verification using manually annotated 
video. 

Vehicles quantity Q 7053 
Truck quantity 20 
interval type  long term  short term 
Interval duration 60 min 3 min 
Accepted error ∆Q/Q <3% <10% 
Average Q per interval 1176   58 
Number of Intervals        6  122 
Compliant intervals 100% 99.2% 

IV. CONCLUSION 
An embedded vision system capable of detecting, 

counting, speed-measuring and classifying vehicles has been 
presented. The signal processing in the system strongly 
benefits from the sparse data delivered by the temporal 
contrast vision sensor. Several traffic parameters can be 
calculated in real time by a low-cost, low-power DSP. The 
focus of the paper lies on the evaluation of the counting 
algorithm based on manually annotated video sequences. 
The test data was acquired at a highway test site where one 
traffic flow direction is observed and processed with one 
vision sensor.  The comparison of the reference data with the 
data acquired by the sensor system shows that the counting 
algorithm complies in 100% and 99.2% with the error 
margins of 3% and 10% for the long (60 min) and short  
(3 min) time intervals respectively.  
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