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ABSTRACT

This paper describes a novel On-Board data compression concept for the FIRST/PACS mission of the European

Space Agency (ESA). Using the lossy and lossless compression, the presented method o�ers a high compression rate

with a minimal loss of potentially useful scienti�c data. It also provides higher signal to noise ratio than that for

standard compression techniques. The various modules of the data compression concept are discussed in detail. We

demonstrate the method on synthetic data.
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1. INTRODUCTION

Data compression is becoming increasingly important for economical storage and transmission in several applications.

In fact, this is most demanding in Science, Earth and Space Observation missions where images are generated in

di�erent domains with higher resolution and therefore larger dimensions. This yields to an important increase in

terms of data volume and bit rate. Furthermore, telemetry capabilities did not follow the same performance increase.

Therefore, compression becomes a requirement for communication systems in charge of storage and/or transmission

of the data.

Basically, data compression is a matter of modeling. The more information can be derived from it the less

information has to be transmitted. There are many data compression algorithms which the output quality and the

algorithmic complexity depend on the chosen application. Each application requires its own modeling. Di�erential

Pulse-Code Modulation (DPCM) is a spatial or temporal compression technique that gives good results in many

cases. However, DPCM is less suited for very noisy data or data with jump-type behavior.1,2

The adaptive Run-Length Coding technique has proven to be eÆcient for lossless data compression, especially

for images which contain an uniform background. However, when this condition is not ful�lled the storage capacity

might even raise.

The FIRST Photoconductor Array Camera & Spectrometer (PACS)3 is one of the three instruments operating

on board the Far InfraRed Space Telescope (FIRST)4 foreseen to be launched on 2007.

Our task in the framework of the PACS consortium is to implement a robust On-Board Data Compression

Software on its DSP yielding a high signal to noise ratio and a commandable compression rate. This task is of special

importance because of the extreme compression ratio (depending on the instrumental mode up to 70!) dictated by

the combination of a high raw data rate with a relatively low telemetry rate available for a L2-orbit space mission.

We present in this paper a new data Compression/Reduction Concept which provides such a high compression

ratio. This is achieved by a combination of On-board data reduction with lossless compression algorithms.

This paper is structured as follows. In section 2, we present the problem statements and the characteristics of

the astronomical data. In section 3, the descriptions of the proposed data compression concept and its modules.

The experimental results on the application of this reduction concept on synthetic data are given in section 4. We

conclude with a short summary.
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2. PROBLEM STATEMENT

The FIRST-PACS detector arrays are realized by two extrinsic Ge:Ga photoconductor �lled pixel arrays of format

25� 16 including integrated crygenic readout electronics (CRE). The two arrays are specialized for two wavelength

regimes (40{120�m and 100{210�m, respectively) by applying physical stress to the longer wavelength module.

When such detectors are receiving Infrared photons from an astronomical or internal source, the voltage V at

its output will increase as a function of time. The incoming photons excite charge carriers into the conduction or

valence band. The voltage increase is proportional to the current through the detector which is in turn proportional

to the number of photons falling on the detector. In the case of the PACS instrument the Cold Readout Electronics

pre-ampli�es and samples the photo-currents generated in the detector. Since the output voltage should stay within

a quite limited range, a voltage reset pulse is applied in addition to a sample pulse after a number of desired voltages

has been sampled. For PACS there will be typically only 4 samples on each ramp.

The main challenge is the high data rate of the instrument. The raw data stream consists of 2 � 25 � 18 CRE

channels, so a total of 900 channels. With maximum readout rate of 256 Hz we get a sampling rate of 230400

samples/s. Conversion of this analog data stream by means of a 16 bit ADC yields the maximum data rate of the

raw data stream of 3600 Kbits/s. For transmission of science data di�erent transmission modes are foreseen. In

Science PACS Prime Mode maximum data rate is limited to 100 Kbit/s, while in Science PACS Partner Mode it

is limited to 50 Kbit/s. In Science BURST Mode, the maximum data rate is 400 Kbit/s. Therefore for the prime

mode, a minimum compression ratio of 36 is required�. In addition to that, the detectors are continuously exposed

to high energy cosmic particles inducing a disturbance (glitches) of the readout voltage which decrease the signal

to-noise ratio and hence the data accuracy level. In the sequel we assume the characteristics as depicted in Tab. 1

of the detector and the signals.

Signal/Noise ratio � 6000

Glitch rate 10s/pixel

Glitch tails < 0:5s

Detector output 16bit

Signi�cant bits 14bit

Table 1. Assumed data characteristics

The maximum possible compression rate we could obtain by a lossless compression (i.e., the original measurements

can be recovered) can be computed as follows: A compression ratio of 16=14 is obtained by eliminating non-signi�cant

bits via spatial and temporal redundancy reduction. An additional compression factor of 4 is obtained by calculating

the slope of the ramp, which has to be given at least with the accuracy of the S/N. Therefore, 16 bit for the slope

are suÆcient. A further lossless compression of the signal is not possible because it contains basically the noise of

the telescope, which is by de�nition, incompressible. This noise cannot be eliminated because we would loose the

astronomical signal. Therefore we can achieve a lossless compression factor of 4:57. Since lossless compression is

impossible at such rate we have to perform on-board processing.

In the next section we describe our compression concept in detail.

3. DATA COMPRESSION CONCEPT

This section reviews the basic concept for PACS data reduction / compression software to achieve the desired

downlink data rates. Figure 1 presents the di�erent software modules. First, the data packet received from the Focal

Plane Unit, will be grouped into a set of reset interval measurements (useful time). Each one is called Ramp. It

contains a measurement samples during one reset intervaly.

The compression concept can be coarsely divided into three modules:

�This is for the PACS prime photometry mode, in what follows will only consider this mode, because for the other modes

the requirements for the compression are less demanding
yIn what follows we will consider only one array. The processing for the other array is similar
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Figure 1. A schematic diagram outlining the data compression software.

1. Integration: The integration part of the software performs the on-board data reduction. The basic idea is that

in order to achieve the high compression ratio we have to integrate several ramps on-board. Since, a ramp

maybe e�ected by glitches, we have to ensure that we do not integrate over this ramps. This is done in the

glitch detection and ramp rejection module.

2. Loss-less coding: The loss-less coding part of the software consists of the temporal and spatial redundancy

reduction and the loss-less coder.

3. Reference data selection: This module is responsible for transmitting selected ramps without compressing them.

The main reason for this module is to check the performance of the compression software on ground. In what

follows we will not describe this module further.

In the following subsections we describe the individual modules in detail, with special emphasize on the integration

and glitch detection part.

3.1. Ramp Fitting

Ramp �tting is one of the crucial steps of the proposed data reduction concept. In this paper, we only will consider

linear ramps. We can show that an extension to the non-linear ramps could be easily done when analytic model of

the ramp is available. The ramps are �tted to the sensor readings in order to obtain the ux. Let us consider the

samples belonging to a ramp given by a vector x = [x1; : : : xn]
T . A linear ramp is given by

x = st+ o+ �

where s is the unknown slope, t are the known instants of sampling o is the unknown o�set and � is a vector of

random variables with distribution of every element assumed to be N(0; �), characterizing the noise process. In order

to obtain the parameters of interest this equation has to be solved in a robust manner. We have following options:



Least squares solution: The least squares solution can be easily calculated in analytic form, and is optimal with

respect to the Gaussian noise process. However, in case of gross outliers (i.e., glitches) it performs very poor.

Fig. 2(a) shows an example where least squares is performing very well. Whereas Fig. 2(b) shows the least

squares solution on the same data as in Fig. 2(a) where one sample is an outlier. One can clearly see that the

obtained ramp is far from being perfect.

(a) (b)

Figure 2. Least squares �tting.

Robust solution: Since we have to �nd the solution in a robust manner we are looking for a robust �tting procedure.

There have been many proposals how to obtain a solution to the above equation in the presence of outliers

(e.g. see5,6). Since we are dealing with only a few samples per ramp we have chosen the RANSAC (Random

Sample Consensus) algorithm7 for robust �tting. The basic idea of RANSAC (for line �tting) is the following

(see also Fig. 3):

1. Take randomly two samples and calculate the line which passes exactly through these samples.

2. All samples which are within a pre-speci�ed distance � to the line are put into the support set.

3. Repeat this process many times.

4. Select the line with the largest support set (if there is more than one take the one with the smallest

residual error).

In our case we are dealing with just 4 samples per line, therefore we can calculate all 6 lines. If we are dealing

with ramps containing more samples (e.g. like for ISO) we will take only a subset of points to speed up the

processing. The threshold � required can be set according to the noise level e.g. � = 2�. It can be shown that

RANSAC obtains the theoretically optimal breakdown point of 50%, i.e. it still can �t ramps if not more than

50% of the points are outliers. Fig. 4(a) shows the same example like in Fig. 2(b) but �tted using RANSAC.

One can clearly see that in this case the outlier is ignored and we obtain a perfect �t. Fig. 4(b) demonstrates

the drawback of RANSAC, namely its low eÆciency in removing Gaussian noise. Since the RANSAC solution

is based only on two points we have no possibility of reducing the Gaussian noise. To alleviate this problem

we combine the robustness of RANSAC with the optimality of the Least squares method.

RANSAC and Least Squares: The idea is very simple. We �rst perform RANSAC on the ramp, then we take all

points in the support set to calculate the least squares solution. Thereby we have the robustness of RANSAC

and in addition the eÆciency of the least squares solution. Fig. 5 demonstrates this on the example of Fig. 4(b).

One can clearly see that the solution obtained ignores the outlier and smoothes the Gaussian noise.
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Figure 3. Illustration of RANSAC.
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Figure 4. RANSAC Fitting.

The result of the ramp �tting are the slope and the o�set of the ramps, and for each sample on the ramp we have

a ag if it is an outlier or not. If it is not an outlier we have in addition a residual value. This is the input to the

glitch detection module.

3.2. Glitch detection

Since we will perform on-board integration we have to ensure that we do not integrate over invalid sensor readings

(i.e. glitches). The detection of such events will be performed in the glitch detection module. The glitch detection



Figure 5. Illustration of RANSAC and Least squares.

will be done at the individual sample level "Intrinsic Deglitching" as well as at ramp level "Extrinsic Deglitching"

and by considering subsequent ramps.

Intrinsic Deglitching: This is done by the residual and o�set information calculated by the ramp-�tting module.

All ramps where an outlier has been detected will be discarded.

Extrinsic Deglitching: In this case we have to take into account the di�erence in slope between two subsequent

ramps. If two subsequent slopes di�er more than 2� we have an indication of a glitch.

All ramps which are e�ected by glitches are discarded. Since we have only four points per ramp it does not make

sense to take those parts of the ramp into account which are not e�ected by glitches.

Another critical issue is detection of glitch tails. Since the behavior of the detector might change for some time

after it has been hit by a glitch, this is a critical issue. At the moment the concept foresees to discard all samples

within a �xed time interval when a glitch has been detected. However, in the future we will investigate also methods

such that this can be detected automatically.

3.3. Integration

The integration module will perform on-board integration of the sensor readings in order to achieve the desired

compression ratio. This is the lossy compression part of the software. Special emphasis has to be paid in order to

guarantee integration over the right readings - synchronized with the positions of the chopper - and not to integrate

over ramps a�ected by glitches. Thus, the integration process �rst determines whether to discard all data of a CRE

integration block if there is a lack of con�dence in at least some of the samples. Then slope data of a number of

successive ramps within the same chopper position will be added, if they are free of glitches.

3.4. Spatial and Temporal Redundancy Reduction

The previous modules represent the lossy, i.e. reduction, part of the PACS data reduction/compression system. The

further modules constitute the lossless, i.e. compression, part. To perform the high compression rate required, many

iterated compression should be applied. After the integration we have a sequence of arrays we call it frames (i.e., At,

where A 2 IR16�25 is an array of integrates slopes at time t). Since temporarily and spatially adjacent measurements

will be similar we can use this fact for further data reduction.

Temporal Redundancy Reduction: Let us calculate �t+1 = At
�At+1

: : :�t+n = At
�At+n. If subsequent

frames are similar j�t+ij << jAt+ij; 1 � i � n, therefore we can gain in the compression ratio encoding At

and �t+i
; 1 � i � n.

Spatial Redundancy Reduction: After the temporal redundancy reduction spatially neighboring values in �t+i

should be similar (in the ideal case they are zero), therefore we can gain additional compression by encoding

the di�erence of neighboring pixels.



3.5. Loss-less Coding

Redundancy reduction as outlined above should have reduced the magnitude of pixels values as much as possible. This

fact makes it possible to make assumptions about the distribution of the data, what is a prerequisite for eÆcient

lossless compression. Generally, the astronomical images have uniform background stray-light "Dark Current".

Therefore, the data packet related will contain many identical sample values. The redundancy reduction is suitable

to optimize the data packet size. The Run-Length Encoding is a well-suited method for the redundancy reduction.

Data compression is obtained by specifying only the data value, the data position and the number of time is repeated.

This module �nds its performance for data packets of 900 detectors. Since this is a standard technique used in data

compression we will not describe it further.

4. EVALUATION OF THE COMPRESSION CONCEPT

This section we evaluate the compression concept on a theoretical basis. In addition, we will illustrate the key

concepts (i.e. ramp �tting and glitch detection) on simulated data. For a more detailed experimental evaluation on

realistic data see the accompanying paper.8

Let us �rst consider how many ramps have to be integrated in order to achieve the desired compression ratio of

36. As we have explained in section 2 with lossless compression we can achieve only a compression ratio of 4:57. The

additional compression factor of 7:8 has to be gained by integration of ramps. Therefore, we have to integrate over

8 rampsz.

The next thing to consider is the potential loss of scienti�c data. Of course, the glitch detection will not be 100%

correct. We can quantify the potential loss of scienti�cally valid data by the glitch detection rate and the number of

ramps that will be integrated. Assuming a glitch rate of every 10s/pixel, with a glitch tail of 0:5s we get a probability

of pglitch = 1=20 that a ramp is e�ected by a glitch. Then we can calculate the potential loss of scienti�c data ploss

by

ploss = 1� (1� pglitch(1� pdet))
n

where n is the number of integrated ramps and pdet is the glitch detection eÆciency.

Table 2 lists the potential data loss for various numbers of integrated ramps for di�erent glitch detection rates.

# ramps no glitch detection 50% 90% 99%

2 9:75% 4:94% 0:99% 0:1%

4 18:55% 9:63% 1:99% 0:19%

8 33:66% 18:33% 3:93% 0:39%

14 51:23% 29:84% 6:77% 0:67%

Table 2. Potential loss of scienti�c data

A glitch detection rate of more than 95% seems feasible, therefore the potential data loss will be around 1%-3%.

In fact it will be lower because in the above calculations we have assumed for simplicity that a glitch and its tail

are independent events, which is not true. In fact, if the glitch is detected we have also detected its tail. In addition

we have assumed that when we do not detect a glitch all integrated measurements will be lost. In fact if we miss a

small glitch and integrate over it, this just decreases the signal to noise ratio. Another thing we have not considered

is false negative rate, i.e. we discard a ramp even if it is not a�ected by a glitch, this will of course also lead to a

loss of scienti�c data. But this can be directly estimated. In addition, this has no e�ect on the other data. From

these considerations one can see that the desired compression ratio can be achieved with minimal loss of scienti�cally

valuable data.

zIn fact, integration over 7 ramps should be suÆcient because due to the decrease in signal to noise ratio we could gain

the rest by temporal and spatial redundancy reduction



4.1. Synthetic Data

Fig. 6 shows a demonstration of ramp �tting and glitch detection part of the compression concept. The upper part

of the �gure shows the original data. The other plots show the various �tting and glitch detection procedures. Since

standard least squares gives very bad results we used a robust method called iterative reweighted least squares. From

this plots one can see that all glitches are successfully removed. Some additional ramps not a�ected by glitches get

removed because we always remove the ramp which follows a glitch. For a more detailed experimental evaluation on

synthetic and ISO data see the accompanying paper.8
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Figure 6. Illustration of various �tting and glitch detection methods. From top to bottom: Original synthetic

data, iterated reweighted least squares �tting, RANSAC and RANSAC + Least squares �tting, glitch detection with

iterated reweighted least squares, RANSAC and RANSAC+Least squares.

5. CONCLUSION

In this paper we have described a novel On-Board data compression concept for the FIRST/PACS mission of the

European Space Agency (ESA). We have described the key-modules like ramp-�tting and glitch detection in detail.

Our concept combines lossy and lossless compression, the presented method o�ers a high compression rate with a



minimal loss of potentially useful scienti�c data. It also provides higher signal to noise ratio than that for standard

compression techniques. In an accompanying paper8 we illustrate the method presented in this paper on on synthetic

data and data from ISO.
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