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ABSTRACT

This paper describes the design and implementation of the on-board data compression and reduction software for
the HERSCHEL' /PACS? mission (see also A. Poglitsch et al. in this conference) of the European Space Agency
(ESA). Lead by the Max Planck Institute for Extraterrestric Physics (MPE) in Garching, Austrian scientists
and software engineers participate in the development of the on-board software® for the Photodetector Array
Camera and Spectrometer (PACS). The novel detectors’ high data rates in addition to the distant spacecraft
orbit force us to carry out irreversible reduction steps that are normally done on ground and to use highly
specialized compression algorithms for lossless compression of the reduced science and the header data.

Keywords: Herschel, PACS, On-board, Software, Reduction, Compression, Infrared

1. INTRODUCTION

ESA’s far-infrared and sub-mm cornerstone mission Herschel Space Observatory (HSO) is scheduled for
launch in 2007. It will be equipped with a 3.5m Cassegrain telescope and house three instruments inside its
superfluid Helium cryostat covering the spectral range between 55 and 670um. The three instruments are built
by different European consortia with international cooperation.

Table 1. The scientific payload of the Herschel Space Observatory.

Instrument ‘ PI location spectral range
Photodetector Array Camera and Spectrometer (PACS) | MPE Garching, GER 55-210 pm
Heterodyne Instrument for the Far Infrared (HIFI) SRON Groningen, NL 480-1910 GHz
Spectral Photometer Imaging Receiver (SPIRE) Univ. of Wales/Cardiff, GB | 200-670 pm

PACS will conduct dual band photometry and imaging spectroscopy in the 55-210 micron spectral range.
The instrument consists of two 25x18 Ge:Ga photoconductor arrays for spectroscopy, read out at 256 Hz and
two bolometer arrays with 32x16 and 64x32 pixels for photometry, read out at a frequency of 40 Hz. In both
modes, a high raw data flow of up to 4 Mbit/s is generated. This is far above the telemetry downlink bandwidth,
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Figure 1. Data flow inside PACS warm electronics. The three instruments are connected to the spacecraft (S/C) mass
storage. Inside PACS, the detector arrays are read by the Detector and Mechanism Controller (DMC) built by Centre
Spatial de Liege and sent to the SPU, where all reduction and compression is done. After that, the data are sent to the
Data Processing Unit (DPU), which has an interface to the spacecraft. The DPU hardware is built by Gavazzi under
Istituto di Fisica dello Spazio Interplanetario (IFSI) contract and the DPU Software is also contributed by IFSI. Aside
from the nominal science data flow, each subunit is obliged to send Housekeeping (HK) — a set of diagnostic counters and
values — at time intervals of 2 seconds.

which is normally restricted to 120 kbit/s due to the L2-orbit of the spacecraft in about four times the Moon’s
distance.

Taking the needed signal to noise ratio into account, the required compression factor of typically 40 cannot
be achieved with lossless compression techniques only.* That is why on-board data reduction steps, that are
normally done on ground, are needed.®

Processing of such an amount of data requires dedicated hardware on board. The subunit which is built
for this purpose is the Signal Processing Unit (SPU). Figure 1 illustrates the warm electronics subunits that
are involved in the dataflow. PACS has four independent SPU boards built by CRISA under contract by the
Instituto de Astrofisica de Canarias (IAC). Our Spanish colleagues also provide the startup software and low-
level drivers. Two boards are always operational — one for the long wavelength arrays and one for the short
wavelength arrays — while the other boards serve as backup units. Each SPU board has a copy of the High Level
Software (HLSW) loaded into EEPROM. Different versions of the software can also be uploaded during the
Daily Telecommunication Period (DTCP). This ensures that the mission-critical HLSW can be updated during
operations.

2. REQUIREMENTS AND DESIGN

The main function of the HLSW is to provide data reduction and compression for all foreseen operating modes
of the instrument. This also implies for example, that the communication with other subunits is handled too.
The main functions of the HLSW are:

e execution of commands from the spacecraft Data Processing Unit (DPU)
e data acquisition from the Detector and Mechanism Controller (DMC)

e science data reduction and/or compression

o lossless compression of the DMC data headers

e transmission of the processed data to the DPU

e implementation of servicing, diagnostic and test modes

e remote access to RAM and EEPROM
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Figure 2. SPU HLSW architectural design at top level. The main task is the Watch Process (WP) that signals start and
stop to all other threads. The WP automatically interrupts any ongoing task if a command from the DPU is received.

A variety of sequences, modes and algorithms, commandable and/or adaptable to the data input and uploadable
sets of parameters and tables ensure a maximum of flexibility with a minimum of user interaction.

The SPU HLSW is developed according to ESA engineering software standards using the Yourdon-DeMarco
Structured Analysis method with the Hatley-Pirbhai real-time extensions.® During the design phase, data from
the Infrared Space Observatory (ISO) have been used to evaluate the concept.” The required HLSW functionality
has been decomposed into three main tasks (see figure 2):

e The Watch Process (WP) listens to the DPU link. It interrupts the Application SW whenever a command
is received for its acknowledgment. Basically, any running activity inside the SPU is interrupted whenever
a command is received from the DPU.

e The Application Software (ASW) performs data reduction and compression according to the DMC
header received within the raw data. Its responsibility is to achieve the required compression ratio according
to telemetry requirements and to the compression mode.

e The Housekeeping (HK) module generates HK, which is sent to the DPU in 2 second intervals.

The actual task of the HLSW — science data reduction and compression — is achieved in the ASW module.
Here, the various processing steps from header separation to ramp fitting are done. Figure 3 illustrates a nominal
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Figure 3. A typical reduction and compression sequence. Modules where raw data are irreversibly reduced are filled with
dark grey colour.

compression/reduction sequence as it would be executed in a default mode. As already stated before, the full
nominal sequence is not the only mode of operation. All processing steps are optional — it’s even possible not
to do anything at all with the data, though that case is most unfavorable (see section 1). There is also not just
one lossless compression algorithm applied to all the data before they are sent. For example, the reduced science
data in spectroscopy may be encoded with an implementation of arithmetic coding, whereas in photometry this
is hardly possible due to the required CPU power. The central algorithm that is used for compression of the
science frame headers is outlined in appendix A.

3. IMPLEMENTATION

Each SPU board has a Temic 21020 DSP running at 18 MHz, 7 MB of RAM and one SMCS chip for the
interfaces. These restraints had already been taken into account during the early design phase. The HLSW
modules are with only one exception written in ANSI C. This exception is the interrupt service routine that had
to be coded in assembler.

The current implementation (as of May 2004) of the SPU HLSW consists of more than 11000 lines of code, but
compiles to an executable of less than 250 kB including the Virtuoso™ operating system. For proper operation,
most of the 3 MB of PRAM (see figure 4) are required though, because of the many processing tables.
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Figure 4. A SPU board has a total of 3 MB of PRAM where the HLSW is located and 4 MB of DRAM for data
processing. Depending on the current operation mode, it is only possible to cache a few seconds of input data.

3.1. Drivers and Operating System

To handle the task management — especially with all the simultaneously operating high speed communication
links — the HLSW runs under the Virtuoso®™real-time operating system from WindRiver (previously developed
by EONIC). Virtuoso™is available for several processors, most of them are DSPs. It is linked with the exe-
cutable during compilation. The drivers to access the SMCS and other hardware are provided by the hardware
manufacturer.

3.2. Communication

One SPU communicates on three links: raw data are permanently received from DMC, compressed data are sent
to the DPU and commands can also be received any time from the DPU. The SPU uses a Scalable Multichannel
Communications Subsystem (SMCS) 332 chip which implements the Spacewire standard. It is nominally config-
ured to handle up to 10 Mbit/s on each link. To meet the real-time requirements it was necessary to implement
several input and output buffers as circular buffers.

3.3. Detector Selection

In many cases it may not be needed to use the full array for observation. In addition to that, the detector will
degrade over time and individual pixels will become defunct. So it is most reasonable to apply a pixel selection
mask on the detector arrays. Depending on the number of selected pixels, the raw data could even be transmitted
without reduction.

Detector selection is handled by the SPU with uploadable tables. These tables have a unique identification
number that allows to reconstruct the array geometry on ground. Detector selection tables are stored within the
ground segment software — the Herschel Common Science System (HCSS). Figure 5 shows the tool which is used
to create or modify detector selection tables.

3.4. Transitional Effects

Before any data can be fit it must be ensured that no transitional effects go into the reduction. This especially
addresses external glitches in the detected signal caused by impacts of ionized particles on the detectors. Several
algorithms for glitch detection have been tested and can be selected, but a combination of this step with the
actual fit turned out to be most feasible considering the limited CPU power.

Transitions can also be caused by the instrument itself. The data must be synchronized with the chopper
and other instrumental parameters and constantly monitor measures like the grating position, for instance. If
an unexpected transition occurs, the data processed so far are sent and a new sequence is started without losing
any science frames.
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Figure 5. A screenshot of the Detector selection table graphical user interface within the HCSS. This tool is used to
select active/inactive pixels for consideration in the data stream. In this example, a table with 111 selected pixels for the
long wavelength bolometer array is generated for uplink through telecommand and storage in the local database.

3.5. Reduction and Integration

In the reduction module the raw data from the detectors are averaged or fit depending on the instrument operating
and compression mode. In photometry, samples on a chopper plateau are averaged, whereas in spectroscopy a
more dedicated method has to be used. A series of photoconductor samples within a reset interval is read out
in a non-destructive way, so the resulting signal is a ramp. The ramp or parts of it are then fit with the least
squares method. Several alternative algorithms can be commanded, one for instance splits a ramp into several
sub-ramps that are averaged with their mean. Some compression modes require additional integration to satisfy
the required downlink rate.

3.6. Lossless Compression

Three kinds of data must be compressed with lossless algorithms in the SPU. For this purpose, a handful of
algorithms are implemented and applied accordingly to the data.

e Science Frame Headers

Each raw data frame comes with a 64 Byte header that contains the instrument setup. This header is
required on ground, but at a rate of 256 Hz in spectroscopy it adds up to 128 kbit/s for each of the two
spectroscopic arrays, already exceeding the overall bandwidth! To get rid of the headers, a simple yet most
effective method has been developed. First of all, the header frames are subtracted from each other. That
way, constants are reduced to zeros and counters are reduced to constants. After that, all words containing
zeros are removed by storing their original position in a binary mask. Alternatively, Run-length encoding®
could be used, but it does not perform that well in this case. The remaining data can be easily packed
with an entropy encoder e.g. RZip (see appendix A).
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Figure 6. Some of the first real ramps, obtained during February 2003 in the MPE lab.

e Reduced Science Data
The reduced data still have some properties we can take advantage of to encode the entropy. First of all,

the data are sorted in a profitable way, taking reset intervals of the detector into account. The next step is
to take advantage of redundancies by calculating dynamic differences. After that, the data are processed
with RZip and finally encoded with a variant of arithmetic coding, though this demanding method is not

available for all compression modes due to the restraints on processing power.

¢ Additional Raw Channels
Depending on the selected observation and compression mode, the number of selected pixels and the

observed target, the telemetry bandwidth allows for additional raw data from a few pixels. These raw
data are used on ground to verify the on-board reduction. The method how the additional raw data are

compressed does not differ too much from the way the reduced science is compressed.

3.7. Other Modes

The HLSW must also support the peak-up sequence of the satellite and other routines for recalibration. This
includes the Background Canceling mode that is needed to recalibrate the temperature of the reference channels
in the bolometer. In this mode the DMC and the SPU autonomously reconfigure the instrument setup. The
HLSW has to perform these servicing tasks largely in an autonomous way, but at least these modes are not too

demanding for CPU power.

4. TESTS, VERIFICATION AND CONCLUSION

Since the integration of the HLSW on the SPU hardware mid-2002 and the acceptance and delivery of the SW
to the consortium in spring 2003, a whole lot of tests in all diversity have been conducted at MPE (see figure 6).
We used the findings to improve the HLSW and to respond to the evolution of our detectors. This process of
iteration is still not finished. The central points are dealing with the detector non-linearity and its response to
glitches. With support from the PACS Instrument Control Center, new methods are still being investigated. Yet
most advanced methods require too much CPU power, that is simply not available. Nevertheless, many modules



have proven of value, like our communication tasks. The header compression turned out to be most efficient,
yielding lossless compression ratios of typically 40(!) and more, leaving many standard algorithms® that we tried
far behind. We also experienced that the vast majority of standard lossless compression algorithms® are hardly
useful for any other kind of our data. In addition to our efforts, studies have been made to evaluate transform
coding methods for on-board compression and to apply reduction and compression concepts to infrared cameras
of other space observatories.'®

APPENDIX A. RZIP

RZip is a lossless compression algorithm that we developed for DMC header compression. It is not intended for
compression of any other data, though it turned out to be useful in other contexts as well. The emphasis was on
writing an algorithm that runs fast on the DSP and compresses the science frame headers as efficient as possible.

The strategy of RZip for searching redundancies in the input buffer is closely related to the data granularity.
Our header data words are 32-bit wide. Therefore, a symbol size of 32 bit ensures a good chance in finding
reoccurring equal symbols. Another important factor to consider is the wordsize of the CPU or - in case of PACS
- the DSP. Most DSP instruction sets only support 32-bit granularity.

So, RZip focuses on 32-bit words. Given an arbitrary 32-bit symbol of a data buffer, a logical question can
y y > g q
be posed, “Does it reoccur, or not?” If so, “where in the buffer or how often does it repeat?”

Basically, RZip takes a symbol and looks ahead for recurrence within a certain index range. The index
difference of the two occurrences is encoded taking already coded indices into account. After that, the next
occurrence of the symbol is sought if not the end of the buffer is encountered. In case there are no more
occurrences, the source buffer is investigated for the next symbol.

The distances can be encoded in different ways. One way is to use the maximum distance as an indicator for
no more recurrences. In case of PACS a binary flag after a symbol in the encoded data stream indicates either
that an offset will follow or that there are no more occurrences for the current symbol.

Two parameters determine the performance of the algorithm:

e The size of a symbol quantifies the number of bits per symbol. In case of PACS this is fixed at 32 bit per
symbol.

o A sets the width of the range to look ahead for recurring symbols. For instance, a A of 4 means that
2% = 16 indices will be checked.

To get a little more into the algorithm, an explanatory example run is given:

Let SOURCE be the data buffer to be compressed. Let DEST be the destination buffer where the compressed
data will be put.

A is the parameter that determines the number of bits to use for encoding ranges. In the following example
we choose 2, therefore the effective offset counter § will be 0..3 (= 22 — 1). The size of a symbol shall be 32 bit.

Our SOURCE (symbol buffer) may look like:
AABCAACCBB SOURCE
There is also need for a workbuffer. At the beginning of the algorithm, it has to be cleared.
000000O0O0OO WORK
a) Select the first unused (workbuffer = 0) Symbol and the workbuffer to 1.
AB
00

CA
00

o =
O Q
o



b) Look ahead if the symbol recurs within §. If yes, code 1 within 1 bit and & within A bits. Set the proper
position of the found symbol in the workbuffer to 1. Reset the § to 0 and continue until no further occurrences
are found, then code 0 in 1 bit.

¢) Go back to a) until the end of the buffer.

First, all As are coded.

ABCAACCBB SOURCE
100110000 WORK
yO0. . y2y0 n DEST

The next symbol to code is B.

AA " CAACCBB SOURCE
1170110000 WORK
AyOy2yOn ~ n DEST

Next one is C.

AAB  AACCBB SOURCE
111 111100 WORK
AyOy2yOnBn . . y0y0 n DEST

And finally, B again.

AABCAACC B SOURCE
11111111 1 WORK
AyOy2yOnBnCyOyOn = yO n DEST

In this example, 10 symbols of 32 bit size are encoded to 4 symbols plus 10 flags plus 6 ranges & A = 2 bit.
So, the input stream was 320 bit and the output stream is 150 bit. Therefore, the achieved compression ratio in
this case is 2.13.

Note that the difference between A A will be encoded 0 (0 symbols are between them). The difference between
A X X A will be encoded 2 if the X have not been coded before and if a range of 2 is allowed due to the set A
(this should be the case). In case you have already coded all As, the difference between the Bs in B A C B will
be encoded as 1 (the As are already invisible due to the mask in the workbuffer).

Once a buffer has been compressed with a set of parameters, it can be encoded another time with different
parameters. For example, DMC header compression works best with A = 6 applied twice. Using more than
three iterations did not yield any more compression in most cases.
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