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ABSTRACT

Faint sources detection is one of the major issues during the
reconstruction of an astronomical science image from a raw
data sequence. This problem is a consequence of the detec-
tion limit of the infrared instruments as well as the number
of cosmic ray impacts (glitches) that leads to the false de-
tection. Astronomical images contain many objects with
isotropic structures (e.g. point sources) but also plenty of
anisotropic information (e.g. filamentary structures). The
wavelet transform is usually applied to separate all these
signal constituents in each pixel, then a map is built to rep-
resent the information of the associated noise before apply-
ing a source detection algorithm. Wavelets are well adapted
to point singularities (discontinuities), however, they have a
problem with orientation selectivity. Therefore, they do not
represent anisotropic structures (e.g. smooth curves) effec-
tively. This paper presents a combined approach contourlet-
wavelet for faint source extraction from infrared raw im-
ages sequences. While the contourlet representation pro-
vides oriented support for efficient approximation of anisotropic
structures, isotropic geometry is effectively captured by sep-
arable wavelets. This novel approach has been tested on real
and simulated infrared images, stemming from the infrared
space observatory database.

1. INTRODUCTION

Most of the image processing techniques [12] relies on the
presence of geometrical information for efficient object recog-
nition. Astronomy is one of many applications that exploit
those techniques for efficient representation of astronomical
objects [18]. One of the most critical issues is the detection
efficiency of the faint celestial sources from the image back-
ground (In astronomy applications, the notion ’background’
points out to all what is not relevant for astronomers). This
problem raises from the detection limit of the acquisition
systems, and thus, the capability to distinguish the faint
sources with low contrast from the unwanted background,

which is generally a problem in several image processing
applications. This paper focuses on the InfraRed (IR) as-
tronomy applications and it will be shown that the proposed
analysis can be easily extended to other applications when-
ever the signal model is known.

1.1. Thermal IR-imaging

Thermal IR-imaging (above 5µm) is a measure of heat. To
capture this energy, a complex instrumentation is usually
used such that the detectors are cooled down to few kelvins,
to not spoil the target signal [11]. Therefore, IR detectors
measure a composite signal: source + background. Further-
more, image acquisition is susceptible to cosmic particles
(glitches) that might on one side disturb the signal accuracy,
changing the electronic characteristics (e.g. responsivity),
and on the other side, it might increase the background sig-
nal amplitude that may decrease the source extraction effi-
ciency [3, 5].

The science infrared image of NGC 1808 is depicted in
Figure 1 is a result of 19 minutes observation of an infrared
camera from ISO [5], at 6.7µm with a detector array of 32 X
32 pixels with 16-bit resolution. The quantum of measure-
ment consists, therefore, of a pair of RESET and End-Of-
Integration (EOI) frames. Figure 2 depicts a sequence of
30 selected raw images of this science image (NGC 1808).
The white vertical line represents the column 24 with dead
pixels, detectors that were lost during the mission. Some
images show white dots and curves, which represent the
glitches, that influence the EOI raw images calibration.

1.2. Faint Sources

One of the challenging tasks in a reconstruction scheme
is the extraction of faint sources from such raw image se-
quences. Indeed, faint sources usually consist of signal am-
plitude that is equivalent to the instrument detection limit,



Fig. 1. Starburst galaxy NGC 1808 taken by ISOCAM at
6.7µm

but also the glitch events may cause detector responsivity
increases, and therefore, decrease the detection efficiency.

It is a fact that most real life signals are non-stationary.
They often contain transient components, sometimes very
significant physically, and mostly cover a wide range of fre-
quencies. In addition, there is frequently a direct correlation
between the characteristic frequency of a given segment of
the signal and the time duration of that segment. Low fre-
quency pieces tend to last a long interval, whereas high fre-
quencies occur in general for a short moment only. Clearly
standard Fourier analysis is inadequate for treating such sig-
nals, since it loses all information about the time localiza-
tion of a given frequency component. In addition to that, it
is not sparse. Therefore, image analysis turns over to mul-
tiresolution wavelet representation.

1.3. Analysis by Multiresolution Wavelet Representations

The A-trous WaVelet Transform (WVT) [13] is an impor-
tant tool for faint source detection as used by Starck in [15].
However, it was shown in [6, 7] that separable wavelets can
capture only limited directional information, and therefore,
cannot represent smooth contours effectively, which are the
basis elements in anisotropic features. In [17], the curvelet
transform has been used for representation of astronomical
image with anisotropic aspects. However, IR astronomical
images may contain both isotropic and anisotropic struc-
tures (stars and/or galaxies with filamentary structures). There-
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Fig. 2. Selected ISOCAM raw images sequence (30 im-
ages) during NGC 1808 observation at 6.7µm (For display
reasons, the raw images resolution has been decreased in
this figure)

fore, a combination of methods that preserve both features is
required for an improved reconstruction efficiency. Do and
Vetterli [7] proposed the ConTourlet Transform (CTT), a
multiresolution method using directional filter banks. Using
sufficient number of directions, this method presents an op-
timal approximation of geometrical objects with anisotropic
structures. To achieve a nearly critical sampling, CTT co-
efficients are obtained after filtering and decimation of the
residual image.

A novel non-decimated version of CTT is presented in
this paper, the Undecimated CTT (UCTT). The UCTT is
further combined with the A-trous WVT for faint source
extraction from IR raw image sequences. The UCTT is ap-
plied to smooth resolution images to capture directional ge-
ometry, while the A-trous WVT is used for coarse resolution
images for the isotropic structures.

This paper can be subdivided into three main parts. In
Section 2, the astronomical signal characteristics from in-
frared detectors and its mathematical formulation are given.
In Section 3, the limitation of state-of-the-art separable WVT
is illustrated on a smooth contour. It raises from the lim-
ited directional information from WVT. Our contribution is
presented in Section 4, which consists of a combination of
UCTT and A-trous WVT for faint source extraction from
IR astronomical images sequence.



Fig. 3. Light detection with photodetectors

2. PRELIMINARY NOTIONS AND PROBLEM
STATEMENTS

This Section presents preliminary notions about the infrared
signal formation [3]. Afterwards, the problem of the detec-
tion limit for faint sources is exposed.

2.1. Infrared Image Formation with the Photodetectors

Astronomical images are formed by means of a combina-
tion of several single photodetectors, called ’detector ar-
rays’. The simplest light detection method possible with
photodetectors is incoherent (direct detection), in which the
signal involves the photocurrent itself (directly proportional
to the power of incident light).

The basic incoherent detection setup is shown schemat-
ically in Figure 3. Besides the detector, it is assumed to in-
clude some optical elements that can add significant amounts
of light to the beam, in addition to that provided by the
signal power from a celestial source. The simplest exam-
ple for the addition of such background light is thermal
(blackbody) emission from the optical elements themselves,
which is commonly the dominant background source at IR
wavelengths and longer (≥ 2 µm) for room-temperature op-
tics. If the transmission of these optics is represented by 1-
ε, then the signal is reduced by that factor, that is, an inci-
dent power PS is reduced to (1- ε)PS, and ε, the effective
emissivity of the optics, gives rise to thermal radiation in
the amount [3]

PB = εBν(T )∆νAΩ = ε
2hν3

c2

1

ehν/kT − 1
∆νAΩ, (1)

where T is the temperature of these optics, ∆ν is the
bandwidth of light which we are concerned with (assumed
<<ν), and AΩ is the area-solid angle product of the beam
(assumed << 4πA). We will refer to any such optical ele-
ments as warm. At visible and shorter wavelengths, black-
body emission from optics at normal room temperature is
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Fig. 4. Illustration of faint source detection and estimation
constraints

negligibly small, so such optics can be considered cold in
this wavelength range.
Using IR and longer wavelengths as our example, the power
incident through the warm and cold optics on the detector is

P = τ(1 − ε)PS + τPB + PN , (2)

(see Figure 3), where PB is given by Equation 1, and PN

is the noise power. The noise in IR astronomy has several
origins: the detectors noise, the amplifier noise..etc [15, 3].
Furthermore, astronomical data suffer from cosmic ray im-
pacts (glitches) as well as from the transient behavior of the
detectors, which may cause potential change in the detec-
tion limit of the instrument.

We are trying to measure PS , which is the power from
the celestial source, within the wavelength band defined by
the filters and within the solid angle Ω.

2.2. The Critical Issues

One of the important criteria in an efficient reconstruction
scheme, is the capability of the detection of all source tar-
gets within the astronomical images sequences. In other
words, the reconstruction process should be able to reerect
the source power PS from the composite power P given in
Equation 2. Indeed, this is a critical issue while dealing with
faint sources over a high-brightness background and in the
presence of noise. Faint sources are celestial objects that
emit weak amplitude light, which is usually closer to the
background and close to the instrument detection limit.



Fig. 5. Illustration of faint source connectivity within the
A-trous wavelet scales

2.2.1. Detection

The main difficulty in dealing with astronomical faint source
detection is the combination of the cosmic ray impacts, and
the transient behavior of the detectors and the background
level. The capability of detecting the source depends on the
number and relevance of available features (the number of
raw images of a given target) for the reconstruction of the
faint sources. If we consider PS as the relevant signal and
’PB , PN ’ as the unwanted background (noise), then signal
to noise ratio criterion can be used to assess the detection
capability of the source target respective to different levels
of noise. Figure 4 illustrates the general concept for sources
detection and/or estimation. The detection and/or estima-
tion efficiency depends on the signal-to-noise ratio and on
the existing amount of information. It depicts two bound-
aries. There is a lower limit below which source targets are
not detectable. There is an upper level above which source
targets are detectable and estimable. There is also a region
between the two boundaries where the sources can be de-
tectable but not estimable.

2.2.2. Reconstruction

As mentioned before, a perfect reconstruction of the faint
sources are only possible in the region above the estimation
limit. As a conclusion, faint sources could be undetectable
in a single temporal signal, but detectable after co-addition
of the data for long observation time. Thus, processing tech-
niques can be used to remove the background while distin-
guishing the sources from the irrelevant information.

Consequently,the major source of errors here is not the
detection limit of the instrument, which is quite low, but the
possible large number of glitches that create false detection.

2.2.3. Extended Faint Sources

Another critical issue on the reconstruction life-cycle is the
detection of the extended faint sources. Extended faint source
is an object with a dimension that is bigger than that of the
image field of view. In this case, the background power is
not distinguishable from the source power on a single point-
ing (Pointing is an observation technique by looking on one
target). In this case, it is not feasible to estimate the source
target, and different observing modes like raster (i.e. build-
ing an image mosaic from single image acquisitions on dif-
ferent pointing targets), or chopping (i.e. switching between
two of more pointing targets) have to be used.

3. WAVELET ANALYSIS

The A-trous WVT is an appropriate tool to separate an im-
age into a set of contributions at different scales and fre-
quency bands [4, 16]. Thus, the estimation of a source can
be performed by finding the correspondence between given
structures in sequence of images at different resolution lev-
els. Figure 5 depicts an illustration of the wavelet analysis
of an integration image at different four scales (the finest
scale is the top plane). Those scales represent the WVT co-
efficients space at each resolution level.

This presented approach using the A-trous WVT is effi-
cient for the detection of isotropic structures where the ba-
sic elements are elongated shapes with limited directional
information. However, astronomical faint sources mainly
consist of galactic elements with filamentary structures that
are highly anisotropic with smooth contours. For this rea-
son, the CTT transform is introduced in this paper to deal
with those smooth 2D singularities.

4. THE CONTRIBUTION OF THIS WORK

This Section presents the limitation problem of separable
WVT for the representation of 2D singularities. The CTT



Fig. 6. Illustration of a smooth contour approximation using
A. Wavelet and B. Contourlet

approach is proposed to alleviate this problem where an un-
decimated version of CTT is introduced. The combined ap-
proach ’CTT–WVT’ is proposed in order to exploit advan-
tages of both approaches in representing isotropic (WVT)
and anisotropic structures.

4.1. Wavelets and Contourlets

For efficient non-linear approximation of smooth contours,
an appropriate number of directions can be taken versus a
limited number of resolutions. Figure 6 illustrates CTT ap-
proximation of a smooth boundary versus the classical ap-
proximation using WVT [7]. As the resolution becomes
finer, WVT needs to use many fine dots to capture the con-
tour. On the other side, CTT explores effectively the smooth-
ness of the contour by making strokes with different elon-
gated shapes and in a variety of directions following the
contour. This intuition was first formalized by Candès [6],
and then extended by Do and Vetterli in [7].

4.2. The Undecimated A-Trous Contourlet Transform

As the critically-sampled CTT uses a Laplacian Pyramid
(LP) and Directional Filter Banks (DFB), the decomposi-
tion is not translation invariant. Therefore, an undecimated
variant at the LP level, i.e the UCTT can be an alternative
solution.

In the presented approach, other than in [9], the A-Trous
multiresolution transform decomposes the image I :

I =

M−1∑

i=0

w̌i + rM (3)

into M scales, with coefficients w̌i and with residuum rM ,
thus, replaces the operation of the LP.

A multiresolution transform is a sequence of closed, self-
similar subspaces Vn, n ∈ Z in L2(R), which have a hier-

archy [ . . . V0 ⊂ V1 ⊂ V2 ⊂ . . . ].

The nested spaces have an intersection that contains the
zero function only and a union that is dense in L(R). A scal-
ing function Φ ∈ V0 exists with Φ (x) =

∑
k∈Z hk

√
2Φ(2x−

k) for some coefficients hk, k ∈ Z.

The A-Trous transform can be seen from another point
of view as oversampling the original image coefficients by
a scaling filter. The kernel of the scaling filter itself is in-
terpolated for every scale, by insertion of 2k − 1 zeros (i.e.
holes’English’==trous’French’), thus, the number of coeffi-
cients are constant in all scales.

The coefficients w̌i are gained by building the differ-
ence between two consecutive scales Vn. Thus, one can
argue a different interpretation, in such terms of building an
isotropic diffusion time series. The scaling filter in use is
the ordinary triangle filter [ 1

4

1

2

1

4
]. The coefficients wi are

then processed by the usual DFB’s.

4.3. The Hybrid Multiresolution Approach

The idea developed here is to use the hybrid multiresolution
approach UCTT–WVT for a decomposition of a signal into
it’s set of contributions. The proposed approach [2] consists
of four decomposition levels.

• In the first two steps, the undecimated CTT is used.
It consists of an undecimated LP and DFB. LP rep-
resents a lowpass filtering of the image, and the cal-
culation of the residual image that is the difference
between the original image and the lowpass filtered
image. Then, the residual image is passed through
DFB in order to obtain the UCTT coefficients h1,2.
Thus, the advantage of UCTT in capturing smooth 2D
singularities is exploited in the finest decomposition
levels, where anisotropic features may be present.

• In the last two steps, the A-trous WVT is used [13]
and the respective coefficients are calculated h3,4. Thus,
the advantage of A-trous WVT in capturing point-like
singularities is exploited in the coarsest decomposi-
tion levels, where isotropic features are present.

The multiresolution filtering method consists of measur-
ing the information h (at each multiresolution level) relative
to UCTT and WVT coefficients, and of separating this into
two parts hs, and hn. The expression hs is called the signal
information that corresponds to the power PS and repre-
sents the part of h, which is certainly not contaminated by
the noise. The expression hn is called the noise information
that corresponds to the powers PBandPN and represents
the part of h which may be contaminated by the noise.



The transform coefficients can be decomposed as fol-
lows: h = hs + hn.

Following this notation, the corrected coefficient w1 should
minimize:

J(w1j) = hs(wj − w1j) + hn(w1j) (4)

i.e. there is a minimum of information in the residual (w −
w1), which can be due to the significant signal, and a min-
imum of information that could be due to the noise in the
solution w1j .

5. CONCLUSIONS

This paper presents a novel approach for efficient faint source
extraction from raw images sequence in infrared astronomy.
The proposed approach consists of a combination between
the undecimated contourlet transform and the A-trous wavelet
transform. While contourlets allow the extraction of direc-
tional source information (anisotropy), wavelets enable to
capture isotropic features.
Thus, the advantages of both transforms are associated in
one scheme for effective estimation of different astronomi-
cal source structures under dedicated constraints.
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